[1]马甜甜,杨长春,严鑫杰,等.融合知识图谱和轻量级图卷积网络推荐系统的研究[J].智能系统学报,2022,17(4):721-727.[doi:10.11992/tis.202107016]
MA Tiantian,YANG Changchun,YAN Xinjie,et al.Research on the fusion of knowledge graph and lightweight graph convolutional network recommendation system[J].CAAI Transactions on Intelligent Systems,2022,17(4):721-727.[doi:10.11992/tis.202107016]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第4期
页码:
721-727
栏目:
学术论文—自然语言处理与理解
出版日期:
2022-07-05
- Title:
-
Research on the fusion of knowledge graph and lightweight graph convolutional network recommendation system
- 作者:
-
马甜甜, 杨长春, 严鑫杰, 贾音, 蔡聪
-
常州大学 计算机与人工智能学院, 江苏 常州 213000
- Author(s):
-
MA Tiantian, YANG Changchun, YAN Xinjie, JIA Yin, CAI Cong
-
School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213000, China
-
- 关键词:
-
图卷积网络; 知识图谱; 推荐系统; 嵌入传播; 协同过滤; 稀疏性; 邻域信息; 轻量聚合器
- Keywords:
-
graph convolutional network; knowledge graph; recommendation system; embedded propagation; collaborative filtering; sparsity; neighborhood information; lightweight aggregator
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202107016
- 摘要:
-
基于协同过滤的算法是推荐系统中最重要的方法,由于冷启动和数据稀疏性的特点,限制了其推荐性能。为了应对以上问题,提出了知识图谱和轻量级图卷积网络推荐系统相结合的模型,该模型通过将知识图谱中的各个实体(项目)进行多次迭代嵌入传播以获取更多的高阶邻域信息,通过轻量聚合器进行聚合,进而预测用户和项目之间的评分。最后,在3个真实的数据集上MovieLens-20M、Last.FM和Book-Crossing的实验结果表明,该模型与其他基准模型相比可以得到较好的性能。
- Abstract:
-
The algorithm based on collaborative filtering is the most important method in the recommendation system. However, the cold start and data sparsity characteristics limit its recommendation performance. We propose a model that combines a knowledge graph and a lightweight graph convolutional network recommendation system to address the aforementioned issues. The model embeds and propagates multiple items in the knowledge graph to obtain more high-order neighborhood information. It aggregates through a lightweight aggregator to predict the score between users and items. Finally, the experimental findings of MovieLens-20M, Last.FM and Book-Crossing on three real datasets show that compared with other benchmark models, this model can achieve better performance.
更新日期/Last Update:
1900-01-01