[1]王凯旋,任福继,倪红军,等.面向电力设备红外图像的温度值识别算法[J].智能系统学报,2022,17(3):617-624.[doi:10.11992/tis.202105043]
WANG Kaixuan,REN Fuji,NI Hongjun,et al.Temperature value recognition algorithm for the infrared image of power equipment[J].CAAI Transactions on Intelligent Systems,2022,17(3):617-624.[doi:10.11992/tis.202105043]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第3期
页码:
617-624
栏目:
人工智能院长论坛
出版日期:
2022-05-05
- Title:
-
Temperature value recognition algorithm for the infrared image of power equipment
- 作者:
-
王凯旋1,2, 任福继2, 倪红军1, 吕帅帅1, 汪兴兴1
-
1. 南通大学 机械工程学院,江苏 南通 226019;
2. 德岛大学 智能信息工学部,日本 德岛 7708501
- Author(s):
-
WANG Kaixuan1,2, REN Fuji2, NI Hongjun1, LYU Shuaishuai1, WANG Xingxing1
-
1. School of Mechanical Engineering, Nantong University, Nantong 226019, China;
2. Department of Intelligent Information Engineering, Tokushima University, Tokushima 7708501, Japan
-
- 关键词:
-
电力设备; 红外图像; 自适应阈值; 图像分割; 字符识别; 卷积神经网络; 缺陷检测; 仿真系统
- Keywords:
-
power equipment; infrared image; adaptive threshold; image segmentation; character recognition; convolutional neural network; defect detection; simulation system
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202105043
- 摘要:
-
为了快速准确地识别出红外图像中温度值实现缺陷检测,提出了面向电力设备红外图像的温度值识别算法。针对温度值区域背景复杂的问题,根据红外图像直方图自适应确定阈值进行预处理;结合轮廓与相对位置信息,准确定位温度值区域,并实现字符分割;建立温度值图像数据集,采用卷积神经网络进行训练和测试;基于MATLAB的App Designer模块,设计温度值识别与记录系统。结果证明,该算法对温度值识别准确率达到98.6%,高于传统的字符识别算法,能够实现快速识别与准确记录温度值,有效降低了电力巡检人员的劳动强度。
- Abstract:
-
To quickly and accurately recognize the temperature value of an infrared image and realize defect detection, we propose a temperature value recognition algorithm for the infrared image of power equipment. Owing to the complex background of the temperature value region, the adaptive threshold is determined for preprocessing based on the infrared image histogram. Combined with the contour and relative position information, the precise location of the temperature value is segmented. The infrared image temperature values dataset is established, trained, and tested by the convolutional neural network. The temperature value recognition and recording system are designed based on the App Designer module of MATLAB. The experiment demonstrates that the accuracy of the proposed method reaches 98.6%, which is higher than the traditional character recognition algorithm. The proposed method can quickly and accurately recognize and record the temperature value, effectively reducing the labor intensity of power inspectors.
备注/Memo
收稿日期:2021-05-27。
基金项目:江苏高校优势学科建设工程项目(PAPD);德岛大学研究集群项目(2003002)
作者简介:王凯旋,硕士研究生,主要研究方向为电力设备缺陷检测和图像处理;任福继,教授,博士,日本工程院和欧盟科学院院士,中国人工智能学会名誉副理事长,日本工学会、IEICE、CAAI Fellow,日本国际先进信息研究所主席,主要研究方向为人工智能、情感计算、自然语言理解、模式识别。获吴文俊人工智能科学技术奖创新一等奖等。申请发明专利10余项,发表学术论文500余篇;倪红军,教授,博士,南通大学张謇学院院长,江苏高校优势学科带头人之一,再生铸造铝合金工程研究中心主任,中国有色金属协会再生金属分会学术委员会委员,中国再生资源产业技术创新战略联盟理事,主要研究方向为新能源新材料及装备技术、人工智能等。申请发明专利70余项,获授权37项,成功转让发明专利14项。发表学术论文70余篇
通讯作者:倪红军.E-mail:ni.hj@ntu.edu.cn
更新日期/Last Update:
1900-01-01