[1]宋思雨,苗夺谦.基于多粒度空间混乱的细粒度图像分类算法[J].智能系统学报,2022,17(1):144-150.[doi:10.11992/tis.202105040]
 SONG Siyu,MIAO Duoqian.Fine-grained image classification algorithm based on multi-granularity regions shuffle[J].CAAI Transactions on Intelligent Systems,2022,17(1):144-150.[doi:10.11992/tis.202105040]
点击复制

基于多粒度空间混乱的细粒度图像分类算法

参考文献/References:
[1] 罗建豪, 吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述[J]. 自动化学报, 2017, 43(8): 1306–1318.LUO Jianhao, WU Jianxin. A survey on fine-grained image categorization using deep convolutional features[J]. Acta automatica sinica, 2017, 43(8): 1306–1318.
[2] ZHAO Bo, FENG Jiashi, WU Xiao, et al. A survey on deep learning-based fine-grained object classification and semantic segmentation[J]. International journal of automation and computing, 2017, 14(2): 119–135.
[3] WEI Xiushen, WU Jianxin, CUI Quan. Deep learning for fine-grained image analysis: a survey[EB/OL]. (2019-07-06)[2021-05-26].https://arxiv.org/abs/1907.03069v1.
[4] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436–444.
[5] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE transactions on neural networks, 1994, 5(2): 157–166.
[6] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(8): 1798–1828.
[7] LANG Guangming, MIAO Duoqian, FUJITA H. Three-way group conflict analysis based on pythagorean fuzzy set theory[J]. IEEE transactions on fuzzy systems, 2020, 28(3): 447–461.
[8] YUE X D, CHEN Y F, MIAO D Q, et al. Fuzzy neighborhood covering for three-way classification[J]. Information sciences, 2020, 507: 795–808.
[9] CHEN Yumin, MIAO Duoqian. Granular regression with a gradient descent method[J]. Information sciences, 2020, 537: 247–260.
[10] QIAN Jin, LIU Caihui, MIAO Duoqian, et al. Sequential three-way decisions via multi-granularity[J]. Information sciences, 2020, 507: 606–629.
[11] 王子晔, 苗夺谦, 赵才荣, 等. 基于多粒度特征的行人跟踪检测结合算法[J]. 计算机研究与发展, 2020, 57(5): 996–1002.WANG Ziye, MIAO Duoqian, ZHAO Cairong, et al. A pedestrian tracking algorithm based on multi-granularity feature[J]. Journal of computer research and development, 2020, 57(5): 996–1002.
[12] ZHANG Ning, DONAHUE J, GIRSHICK R, et al. Part-based R-CNNs for fine-grained category detection[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014: 834–849.
[13] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International journal of computer vision, 2013, 104(2): 154–171.
[14] BRANSON S, HORN G V, BELONGIE S, et al. Bird species categorization using pose normalized deep convolutional nets[EB/OL]. (2014-06-11)[2021-05-26].https://arxiv.org/abs/1406.2952.
[15] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(9): 1627–1645.
[16] HUANG Shaoli, XU Zhe, TAO Dacheng, et al. Part-Stacked CNN for Fine-Grained Visual Categorization[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, America, 2016: 1173–1182.
[17] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, America, 2015: 3431–3440.
[18] LIN Di, SHEN Xiaoyong, LU Cewu, et al. Deep LAC: Deep localization, alignment and classification for fine-grained recognition[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, America, 2015: 1666–1674.
[19] WEI Xiushen, XIE Chenwei, WU Jianxin, et al. Mask-CNN: Localizing parts and selecting descriptors for fine-grained bird species categorization[J]. Pattern recognition, 2018, 76: 704–714.
[20] WEI Xiushen, LUO Jianhao, WU Jianxin, et al. Selective convolutional descriptor aggregation for fine-grained image retrieval[J]. IEEE transactions on image processing, 2017, 26(6): 2868–2881.
[21] WANG Dequan, SHEN Zhiqiang, SHAO Jie, et al. Multiple granularity descriptors for fine-grained categorization[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 2399–2406.
[22] XIAO L, XIA T, WANG J, et al. Fully convolutional attention localization networks: efficient attention localization for fine-grained recognition[EB/OL]. (2016-03-22)[2021-05-26]. https://arxiv.org/abs/1603.06765v1.
[23] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1449–1457.
[24] LIN T Y, MAJI S. Improved bilinear pooling with CNNs[C]//Proceedings of the British Machine Vision Conference. London, UK, 2017.
[25] CHEN Yue, BAI Yalong, ZHANG Wei, et al. Destruction and construction learning for fine-grained image recognition[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, America, 2019: 5157–5166.
[26] WAH C, BRANSON S, WELINDER P, et al. The caltech-ucsd birds-200-2011 dataset[R]. Pasadena: California Institute of Technology, 2011.
[27] MAJI S, RAHTU E, KANNALA J, et al. Fine-grained visual classification of aircraft[EB/OL]. (2013-06-21)[2021-05-26].https://arxiv.org/abs/1306.5151.
[28] KRAUSE J, STARK M, DENG Jia, et al. 3D object representations for fine-grained categorization[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, Australia, 2013: 554–561.
[29] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, America, 2016: 770–778.
[30] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2021-05-26]. https://arxiv.org/abs/1409.1556.
相似文献/References:
[1]刘万军,赵思琪,曲海成,等.结合前景特征增强与区域掩码自注意力的细粒度图像分类[J].智能系统学报,2022,17(6):1134.[doi:10.11992/tis.202109029]
 LIU Wanjun,ZHAO Siqi,QU Haicheng,et al.Combining foreground feature reinforcement and region mask self-attention for fine-grained image classification[J].CAAI Transactions on Intelligent Systems,2022,17():1134.[doi:10.11992/tis.202109029]

备注/Memo

收稿日期:2021-05-26。
基金项目:国家自然科学基金项目(61976158,61976160,62076182).
作者简介:宋思雨,硕士研究生,主要研究方向为计算机视觉、深度学习和粒计算;苗夺谦,教授,博士生导师,国际粗糙集学会副理事长、ACM 上海分会学术委员会委员、中国人工智能学会粒计算与知识发现专委会主任,主要研究方向为机器学习、粗糙集、人工智能和粒计算。主持国家自然科学基金项目6项。发表学术论文200余篇, 出版教材及著作21部。
通讯作者:苗夺谦. E-mail:dqmiao@tongji.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com