[1]谷凤伟,陆军,夏桂华.facenet皮尔森判别网络的人脸识别方法[J].智能系统学报,2022,17(1):107-115.[doi:10.11992/tis.202104008]
 GU Fengwei,LU Jun,XIA Guihua.Face recognition method based on facenet Pearson discrimination network[J].CAAI Transactions on Intelligent Systems,2022,17(1):107-115.[doi:10.11992/tis.202104008]
点击复制

facenet皮尔森判别网络的人脸识别方法

参考文献/References:
[1] GALBALLY J, MARCEL S, FIERREZ J. Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition[J]. IEEE transactions on image processing, 2014, 23(2): 710–724.
[2] HOANG V D, DANG V D, NGUYEN T T, et al. A solution based on combination of RFID tags and facial recognition for monitoring systems[C]//2018 5th NAFOSTED Conference on Information and Computer Science (NICS). Ho Chi Minh City, Vietnam: IEEE, 2018: 384–387.
[3] CAI Weidong, MA Bo, ZHANG Liu, et al. A pointer meter recognition method based on virtual sample generation technology[J]. Measurement, 2020, 163: 107962.
[4] NIGAM S, SINGH R, MISRA A K. Efficient facial expression recognition using histogram of oriented gradients in wavelet domain[J]. Multimedia tools and applications, 2018, 77(21): 28725–28747.
[5] VYANZA V E, SETIANINGSIH C, IRAWAN B. Design of smart door system for live face recognition based on image processing using principal component analysis and template matching correlation methods[C]//2017 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob). Bandung, Indonesia: IEEE, 2017: 23–29.
[6] ZHU Yue, GAO Wanrong, GUO Zhenyan, et al. Liver tissue classification of en face images by fractal dimension-based support vector machine[J]. Journal of biophotonics, 2020, 13(4): e201960154.
[7] OUYANG Aijia, LIU Yanmin, PEI Shengyu, et al. A hybrid improved kernel LDA and PNN algorithm for efficient face recognition[J]. Neurocomputing, 2020, 393: 214–222.
[8] 张毅, 廖巧珍, 罗元. 融合二阶HOG与CS-LBP的头部姿态估计[J]. 智能系统学报, 2015, 10(5): 741–746.
ZHANG Yi, LIAO Qiaozhen, LUO Yuan. Head pose estimation fusing the second order HOG and CS-LBP[J]. CAAI Transactions on Intelligent Systems, 2015, 10(5): 741-746.
[9] 杨恢先, 刘建, 张孟娟, 等. 双差值局部方向模式的人脸识别[J]. 智能系统学报, 2018, 13(5): 751–759.
YANG Huixian, LIU Jian, ZHANG Mengjuan, et al. Face recognition with double difference local directional pattern[J]. CAAI transactions on intelligent systems, 2018, 13(5): 751–759.
[10] 刘峤, 秦志光, 陈伟, 等. 基于零范数特征选择的支持向量机模型[J]. 自动化学报, 2011, 37(2): 252–256.
LIU Qiao, QIN Zhiguang, CHEN Wei, et al. Zero-norm penalized feature selection support vector machine[J]. Acta automatica sinica, 2011, 37(2): 252–256.
[11] 朱换荣, 郑智超, 孙怀江. 面向局部线性回归分类器的判别分析方法[J]. 智能系统学报, 2019, 14(5): 959–965.
ZHU Huanrong, ZHENG Zhichao, SUN Huaijiang. Locality-regularized linear regression classification-based discriminant analysis[J]. CAAI transactions on intelligent systems, 2019, 14(5): 959–965.
[12] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444.
[13] TAIGMAN Y, YANG Ming, RANZATO M A, et al. DeepFace: closing the gap to human-level performance in face verification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014: 1701–1708.
[14] SUN Yi, WANG Xiaogang, TANG Xiaoou. Deep learning face representation from predicting 10,000 classes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014: 1891–1898.
[15] BanBANSAL A, NANDURI A, CASTILLO C D, et al. UMDFaces: an annotated face dataset for training deep networks[C]//2017 IEEE international joint conference on biometrics . Denver, USA: IEEE, 2017: 464–473.
[16] WANG Hao, WANG Yitong, ZHOU Zheng, et al. CosFace: large margin cosine loss for deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 5265–5274.
[17] SCHERHAG U, RATHGEB C, MERKLE J, et al. Deep face representations for differential morphing attack detection[J]. IEEE transactions on information forensics and security, 2020, 15: 3625–3639.
[18] PRASAD P S, PATHAK R, GUNJAN V K, et al. Deep learning based representation for face recognition[M].ICCCE 2019. Singapore: Springer, 2020: 419–424.
[19] ZHANG Kaipeng, ZHANG Zhanpeng, LI Zhifeng, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE signal processing letters, 2016, 23(10): 1499–1503.
[20] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 815–823.
[21] THOMAS A, HARIKRISHNAN P M, PALANISAMY P, et al. Moving vehicle candidate recognition and classification using inception-ResNet-v2[C]//2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). Madrid, Spain: IEEE, 2020: 467–472.
[22] ZHAO Yuanfang, ZHEN Zonglei, LIU Xiqin, et al. The neural network for face recognition: insights from an fMRI study on developmental prosopagnosia[J]. NeuroImage, 2018, 169: 151–161.
[23] GAO Wen, GAO Bo, SHAN Shiguang, et al. The CAS-PEAL large-scale Chinese face database and baseline evaluations[J]. IEEE transactions on systems, man, and cybernetics-part A: systems and humans, 2008, 38(1): 149–161.
[24] LIU Ziwei, LUO Ping, WANG Xiaogang, et al. Deep learning face attributes in the wild[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 3730–3738.
[25] LI Xiaobin, WANG Weiqiang. Learning discriminative features via weights-biased softmax loss[J]. Pattern recognition, 2020, 107: 107405.
[26] FARZANEH A H, QI Xiaojun. Discriminant distribution-agnostic loss for facial expression recognition in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, USA: IEEE, 2020: 1631–1639.
[27] ALBIERO V, BOWYER K W, VANGARA K, et al. Does face recognition accuracy get better with age? deep face matchers say no[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Snowmass, USA: IEEE, 2020: 250–258.
[28] TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification[C]// Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2014.
[29] CAO Xudong, WIPF D, WEN Fang, et al. A practical transfer learning algorithm for face verification[C]//2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 3208–3215.
[30] CHEN Dong, CAO Xudong, WEN Fang, et al. Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013: 3025–3032.
[31] PARKHI O M, VEDALDI A, ZISSERMAN A. Deep face recognition[C]//Proceedings of the British Machine Vision Conference. Swansea, UK: BMVA Press, 2015: 41.1–41.12.
[32] YI Dong, LEI Zhen, LIAO Shengcai, et al. Learning face representation from scratch[J]. arXiv preprint arXiv: 1411.7923, 2014.
相似文献/References:
[1]金一,阮秋琦.一种局部加权的二维主成分分析算法及其在人脸识别中的应用[J].智能系统学报,2007,2(3):25.
 JIN Yi,RUAN Qiu-qi.A partially weighted twodimensional PCA for face recognition[J].CAAI Transactions on Intelligent Systems,2007,2():25.
[2]任小龙,苏光大,相 燕.使用第2代身份证的人脸识别身份认证系统[J].智能系统学报,2009,4(3):213.
 REN Xiao-long,SU Guang-da,XIANG Yan.Face authentication system using the Chinese second generation identity card[J].CAAI Transactions on Intelligent Systems,2009,4():213.
[3]苏光大.多技术合力的人脸识别系统设计[J].智能系统学报,2009,4(6):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
 SU Guang-da.Face recognition system designed to integrate multiple techniques[J].CAAI Transactions on Intelligent Systems,2009,4():471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
[4]王科俊,邹国锋,张洁.SPCA参数对单样本人脸识别效果影响分析[J].智能系统学报,2011,6(6):531.
 WANG Kejun,ZOU Guofeng,ZHANG Jie.Analysis of the influence of SPCA parameters on the recognition of a single sample face[J].CAAI Transactions on Intelligent Systems,2011,6():531.
[5]杜吉祥,翟传敏,叶永青.使用稀疏约束非负矩阵分解算法的跨年龄人脸识别[J].智能系统学报,2012,7(3):271.
 DU Jixiang,ZHAI Chuanmin,YE Yongqing.An agespan face recognition method based on an NMF algorithm with sparseness constraints[J].CAAI Transactions on Intelligent Systems,2012,7():271.
[6]阮晓虎,李卫军,覃鸿,等.一种基于特征匹配的人脸配准判断方法[J].智能系统学报,2015,10(1):12.[doi:10.3969/j.issn.1673-4785.201312064]
 RUAN Xiaohu,LI Weijun,QIN Hong,et al.An assessment method for face alignment based on feature matching[J].CAAI Transactions on Intelligent Systems,2015,10():12.[doi:10.3969/j.issn.1673-4785.201312064]
[7]孙劲光,孟凡宇.一种特征加权融合人脸识别方法[J].智能系统学报,2015,10(6):912.[doi:10.11992/tis.201509025]
 SUN Jinguang,MENG Fanyu.Face recognition by weighted fusion of facial features[J].CAAI Transactions on Intelligent Systems,2015,10():912.[doi:10.11992/tis.201509025]
[8]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[9]刘训利,龚勋,王国胤.一种基于非残差估计线性表示模型的人脸识别[J].智能系统学报,2014,9(3):285.[doi:10.3969/j.issn.1673-4785.201309065]
 LIU Xunli,GONG Xun,WANG Guoyin.Face recognition based on the linear representation model without residual estimation[J].CAAI Transactions on Intelligent Systems,2014,9():285.[doi:10.3969/j.issn.1673-4785.201309065]
[10]夏洋洋,龚勋,洪西进.人脸识别背后的数据清理问题研究[J].智能系统学报,2017,12(5):616.[doi:10.11992/tis.201706025]
 XIA Yangyang,GONG Xun,HONG Xijin.Research on the data cleansing problem for face recognition technology[J].CAAI Transactions on Intelligent Systems,2017,12():616.[doi:10.11992/tis.201706025]

备注/Memo

收稿日期:2021-04-06。
基金项目:黑龙江省自然科学基金项目(F201123).
作者简介:谷凤伟,博士研究生,主要研究方向为人脸识别、机器视觉、图像处理、目标跟踪;陆军,教授,博士生导师,主要研究方向为计算机视觉、智能控制技术、图像处理、高性能船舶控制和机械臂控制。科技部科技型中小企业创新基金项目评审专家,国家自然科学基金同行评议专家。获省部级以上奖励多项。发表学术论文70余篇;夏桂华,教授、博士生导师,主要研究船舶运动建模与仿真、智能船舶技术、船舶驾控模拟系统、图像处理和智能机器人控制。享受国务院特殊津贴专家,获省部级以上奖励多项。发表学术论文70余篇。
通讯作者:陆军. E-mail: lujun0260@sina.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com