[1]曲海成,王宇萍,谢梦婷,等.结合亮度感知与密集卷积的红外与可见光图像融合[J].智能系统学报,2022,17(3):643-652.[doi:10.11992/tis.202104004]
QU Haicheng,WANG Yuping,XIE Mengting,et al.Infrared and visible image fusion combined with brightness perception and dense convolution[J].CAAI Transactions on Intelligent Systems,2022,17(3):643-652.[doi:10.11992/tis.202104004]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第3期
页码:
643-652
栏目:
人工智能院长论坛
出版日期:
2022-05-05
- Title:
-
Infrared and visible image fusion combined with brightness perception and dense convolution
- 作者:
-
曲海成1, 王宇萍1, 谢梦婷1, 肖苇2
-
1. 辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105;
2. 中国铁路沈阳局集团有限公司阜新车务段,辽宁 阜新 123100
- Author(s):
-
QU Haicheng1, WANG Yuping1, XIE Mengting1, XIAO Wei2
-
1. School of Software, Liaoning Technical University, Huludao 125105, China;
2. Fuxin Depot of China Railway Shenyang Bureau Group Co., Ltd, Fuxin 123100, China
-
- 关键词:
-
图像融合; 亮度感知; 密集卷积网络; 对抗生成网络; 红外与可见光图像; 信息熵; 互信息; 差异相关和
- Keywords:
-
image fusion; brightness perception; dense convolution network; GAN; infrared image and visible image; information entropy; mutual information; sum of difference and correlation
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202104004
- 摘要:
-
为解决弱光照条件下红外与可见光图像融合质量差的问题,提出一种结合亮度感知与密集卷积的红外与可见光图像融合方法(brightness perception and dense convolution,BPD-Fusion)。首先,对可见光图像进行亮度计算,得到亮度权重并对其暗区域进行亮度增强;然后,将增强的可见光图像与红外图像级联输入生成器,在其Conv1阶段后嵌入密集卷积以获取更丰富的图像特征;最后,为了达到较强的图像重构与生成能力,建立多损失函数构建端到端的图像融合过程。在TNO和KAIST数据集上进行融合质量测评:主观评价上,提出的方法视觉效果良好;客观评价上,差异相关和、信息熵、互信息和平均梯度指标均优于对比方法。
- Abstract:
-
To solve the problem of poor fusion quality of infrared and visible images under weak illumination, we propose an infrared and visible image fusion method (BPD-Fusion) combining brightness perception and DenseNet. First, the brightness of the visible image is evaluated to obtain its weight and enhance the brightness of the dark area. Then, the enhanced visible and infrared images are input into the generator after concatenating, and DenseNet is embedded after the Conv1 stage to obtain more abundant source image features. Finally, to achieve stronger image reconstruction and generation ability, a multi-loss function is established to construct the end-to-end image fusion process. The fusion quality is evaluated on the TNO dataset and the challenging KAIST dataset. In subjective evaluation, a good visual effect is observed in the proposed method. In objective evaluation, the difference correlation sum, information entropy, mutual information, and average gradient of our method are better than those of the contrast method.
更新日期/Last Update:
1900-01-01