[1]杨慧,张婷,金晟,等.基于二进制生成对抗网络的视觉回环检测研究[J].智能系统学报,2021,16(4):673-682.[doi:10.11992/tis.202007007]
 YANG Hui,ZHANG Ting,JIN Sheng,et al.Visual loop closure detection based on binary generative adversarial network[J].CAAI Transactions on Intelligent Systems,2021,16(4):673-682.[doi:10.11992/tis.202007007]
点击复制

基于二进制生成对抗网络的视觉回环检测研究

参考文献/References:
[1] KONOLIGE K, AGRAWAL M. FrameSLAM: from bundle adjustment to real-time visual mapping[J]. IEEE transactions on robotics, 2008, 24(5): 1066-1077.
[2] 张毅, 沙建松. 基于图优化的移动机器人视觉SLAM[J]. 智能系统学报, 2018, 13(2): 290-295
ZHANG Yi, SHA Jiansong. Visual-SLAM for mobile robot based on graph optimization[J]. CAAI transactions on intelligent systems, 2018, 13(2): 290-295
[3] HO K L, NEWMAN P. Detecting loop closure with scene sequences[J]. International journal of computer vision, 2007, 74(3): 261-286.
[4] 刘强, 段富海, 桑勇, 等. 复杂环境下视觉SLAM闭环检测方法综述[J]. 机器人, 2019, 41(1): 112-123, 136
LIU Qiang, DUAN Fuhai, SANG Yong, et al. A survey of loop-closure detection method of visual SLAM in complex environments[J]. Robot, 2019, 41(1): 112-123, 136
[5] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 17th IEEE International Conference on Computer Vision. Kerkyra, Greece, 2002: 1150-1157.
[6] BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Computer vision-ECCV 2006. Graz, Austria, 2006: 404-417.
[7] SIVIC J, ZISSERMAN A. Video Google: A text retrieval approach to object matching in videos[C]//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003: 1470-1477.
[8] CHEN Zetao, LAM O, JACOBSON A, et al. Convolutional neural network-based place recognition[C]//Australasian Conference on Robotics and Automati-on. Melbourne, Australasian, 2014: 8-14.
[9] SüNDERHAUF N, SHIRAZI S, DAYOUB F, et al. On the performance of ConvNet features for place recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 4297-4304.
[10] GAO Xiang, ZHANG Tao. Unsupervised learning to detect loops using deep neural networks for visual SLAM system[J]. Autonomous robots, 2017, 41(1): 1-18.
[11] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 2672-2680.
[12] HINTON G E, ZEME R S. Autoencoders, minimum description length and Helmholtz free energy[C]//Proceedings of the 6th International Conference on Neural Information Processing Systems. Denver, Colorado, USA, 1993: 3-10.
[13] SMOLENSKY P. Information processing in dynamical systems: foundations of harmony theory[M]//RUMELHART D E, MCCLELLAND J L. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Cambridge: MIT Press, 1986.
[14] SHIN D W, HO Y S, KIM E S. Loop closure detection in simultaneous localization and mapping using descriptor from generative adversarial network[J]. Journal of electronic imaging, 2019, 28(1): 013014.
[15] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]//Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico, 2016: 97-108.
[16] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain, 2016: 2234-2242.
[17] DONG Haowen, YANG Y H. Training generative adversarial networks with binary neurons by end-to-end backpropagation[EB/OL]. (2018-12-12) [2020-01-01] https://arxiv.org/abs/1810.04714.
[18] CAO Yanshuai, DING G W, LUI K Y C, et al. Improving GAN training via binarized representation entropy (BRE) regularization[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada, 2018: 1-22.
[19] ZHOU Bolei, LAPEDRIZA A, KHOSLA A, et al. Places: A 10 million image database for scene recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(6): 1452-1464.
[20] CUMMINS M, NEWMAN P. FAB-MAP: Probabilistic localization and mapping in the space of appearance[J]. The international journal of robotics research, 2008, 27(6): 647-665.
[21] CHOI Y, KIM N, PARK K, et al. All-day visual place recognition: benchmark dataset and baseline[C]//Proceedings of 2015 IEEE International Conference on Computer Vision and Pattern Recognition Workshops. Boston, USA, 2015: 8-13.
[22] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012: 1097-1105.
[23] CHEN Zetao, JACOBSON A, SüNDERHAUF N, et al. Deep learning features at scale for visual place recognition[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation. Singapore, 2017: 3223-3230.
[24] ZAFFAR M, KHALIQ A, EHSAN S, et al. Levelling the playing field: A comprehensive comparison of visual place recognition approaches under changing conditions[EB/OL]. (2019-04-29) [2020-02-01] https://arxiv.org/abs/1903.09107?context=cs.CV.
[25] MEMON A R, WANG Hesheng, HUSSAIN A. Loop closure detection using supervised and unsupervised deep neural networks for monocular SLAM systems[J]. Robotics and autonomous systems, 2020, 126: 103470.
相似文献/References:
[1]申彦,朱玉全.CMP上基于数据集划分的K-means多核优化算法[J].智能系统学报,2015,10(4):607.[doi:10.3969/j.issn.1673-4785.201411036]
 SHEN Yan,ZHU Yuquan.An optimized algorithm of K-means based on data set partition on CMP systems[J].CAAI Transactions on Intelligent Systems,2015,10():607.[doi:10.3969/j.issn.1673-4785.201411036]
[2]程旸,王士同.基于局部保留投影的多可选聚类发掘算法[J].智能系统学报,2016,11(5):600.[doi:10.11992/tis.201508022]
 CHENG Yang,WANG Shitong.A multiple alternative clusterings mining algorithm using locality preserving projections[J].CAAI Transactions on Intelligent Systems,2016,11():600.[doi:10.11992/tis.201508022]
[3]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[4]冯冰,李绍滋.中医脉诊信号的无监督聚类分析研究[J].智能系统学报,2018,13(4):564.[doi:10.11992/tis.201703030]
 FENG Bing,LI Shaozi.Unsupervised clustering analysis of human-pulse signal in traditional Chinese medicine[J].CAAI Transactions on Intelligent Systems,2018,13():564.[doi:10.11992/tis.201703030]
[5]鲍国强,应文豪,蒋亦樟,等.多层递阶融合模糊特征映射的模糊C均值聚类算法[J].智能系统学报,2018,13(4):594.[doi:10.11992/tis.201703047]
 BAO Guoqiang,YING Wenhao,JIANG Yizhang,et al.Fuzzy C-means clustering algorithm for multilayered hierarchical fusion fuzzy feature mapping[J].CAAI Transactions on Intelligent Systems,2018,13():594.[doi:10.11992/tis.201703047]
[6]杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(5):808.[doi:10.11992/tis.201804051]
 YANG Wenyuan.Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J].CAAI Transactions on Intelligent Systems,2018,13():808.[doi:10.11992/tis.201804051]
[7]赵玉新,赵廷.海底声呐图像智能底质分类技术研究综述[J].智能系统学报,2020,15(3):587.[doi:10.11992/tis.202004026]
 ZHAO Yuxin,ZHAO Ting.Survey of the intelligent seabed sediment classification technology based on sonar images[J].CAAI Transactions on Intelligent Systems,2020,15():587.[doi:10.11992/tis.202004026]
[8]王倩倩,苗夺谦,张远健.深度自编码与自更新稀疏组合的异常事件检测算法[J].智能系统学报,2020,15(6):1197.[doi:10.11992/tis.202007003]
 WANG Qianqian,MIAO Duoqian,ZHANG Yuanjian.Abnormal event detection method based on deep auto-encoder and self-updating sparse combination[J].CAAI Transactions on Intelligent Systems,2020,15():1197.[doi:10.11992/tis.202007003]
[9]许子微,陈秀宏.自步稀疏最优均值主成分分析[J].智能系统学报,2021,16(3):416.[doi:10.11992/tis.201911028]
 XU Ziwei,CHEN Xiuhong.Sparse optimal mean principal component analysis based on self-paced learning[J].CAAI Transactions on Intelligent Systems,2021,16():416.[doi:10.11992/tis.201911028]
[10]雷涛,王洁,薛丁华,等.差异特征融合的无监督SAR图像变化检测[J].智能系统学报,2021,16(3):595.[doi:10.11992/tis.202103011]
 LEI Tao,WANG Jie,XUE Dinghua,et al.Unsupervised SAR image change detection based on difference feature fusion[J].CAAI Transactions on Intelligent Systems,2021,16():595.[doi:10.11992/tis.202103011]

备注/Memo

收稿日期:2020-07-08。
基金项目:国家自然科学基金面上项目(61673288)
作者简介:

杨慧,硕士研究生,主要研究方向为视觉回环检测;
陈良,副教授,主要研究方向为基于深度学习的人工智能系统、新一代智能控制理论及应用;
孙立宁,教授,博士生导师,主要研究方向为先进机器人技术。主持“863”计划、973计划、国家重大专项、国家自然科学基金等20多项。获国家技术发明/科技进步二等奖2项、教育部技术发明奖二等奖1项、省级技术发明/科技进步一等奖3项,二等奖2项。发表学术论文400多篇,获授权国家发明专利40余项.
通讯作者:陈良.E-mail:chenl@suda.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com