[1]闫涵,张旭秀,张净丹.多感知兴趣区域特征融合的图像识别方法[J].智能系统学报,2021,16(2):263-270.[doi:10.11992/tis.201906032]
YAN Han,ZHANG Xuxiu,ZHANG Jingdan.Image recognition method based on multi-perceptual interest region feature fusion[J].CAAI Transactions on Intelligent Systems,2021,16(2):263-270.[doi:10.11992/tis.201906032]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第2期
页码:
263-270
栏目:
学术论文—机器感知与模式识别
出版日期:
2021-03-05
- Title:
-
Image recognition method based on multi-perceptual interest region feature fusion
- 作者:
-
闫涵, 张旭秀, 张净丹
-
大连交通大学 电气信息工程学院,辽宁 大连 116028
- Author(s):
-
YAN Han, ZHANG Xuxiu, ZHANG Jingdan
-
School of Electrical Information Engineering, Dalian Jiaotong University, Dalian 116028, China
-
- 关键词:
-
深度学习; 图像识别; 迁移学习; 特征融合; 集成学习; 特征提取; CAM可视化; 视觉组网络模型; 残差网络模型
- Keywords:
-
deep learning; image recognition; migration learning; feature fusion; integrated learning; feature extraction; CAM visualization; VGGNet; ResNet
- 分类号:
-
TP311
- DOI:
-
10.11992/tis.201906032
- 摘要:
-
针对自然图像识别过程中不同深度学习模型关注兴趣区域不同的现象,本文引入深度卷积神经网络融合机制,结合深度迁移学习方法,给出了一种基于多感知兴趣区域特征融合的图像识别方法。本文将迁移学习方法引入牛津大学视觉组网络模型(visual geometry group network,VGGNet)和残差网络模型(residual network,ResNet),通过对单个分类模型进行热力图可视化及特征可视化,得到了不同网络模型关联的特征区域不一样的结论。然后在此基础上分别设计特征拼接、特征融合加特征拼接及融合投票方法将不同模型特征进行融合,得到3种新的融合模型。实验结果表明,本文方法在Kaggle数据集上的识别准确率高于VGG-16、VGG-19、ResNet-50、DenseNet-201模型。
- Abstract:
-
This paper presents the deep convolution neural network fusion mechanism and proposes an image recognition method based on multi-perceptual interest region feature fusion in combination with the deep-migration learning method. This is to solve the problem of different deep-learning models used on different interest regions when they recognize a natural image. The migration learning method is applied to the convolution neural net architectures, namely VGG and ResNet networks. Then, through the visualization of the heat map and the features of single classification model, a conclusion is drawn that the characteristic regions associated with different network models are different. Based on this, the methods of feature splicing, feature fusion and splicing, and fusion voting systems are designed to fuse different model features, obtaining three new fusion models. The experimental results show that the recognition accuracy of this method on Kaggle dataset is higher than that of VGG-16, VGG-19, ResNet-50, and DenseNet-201 models.
更新日期/Last Update:
2021-04-25