[1]闫涵,张旭秀,张净丹.多感知兴趣区域特征融合的图像识别方法[J].智能系统学报,2021,16(2):263-270.[doi:10.11992/tis.201906032]
 YAN Han,ZHANG Xuxiu,ZHANG Jingdan.Image recognition method based on multi-perceptual interest region feature fusion[J].CAAI Transactions on Intelligent Systems,2021,16(2):263-270.[doi:10.11992/tis.201906032]
点击复制

多感知兴趣区域特征融合的图像识别方法

参考文献/References:
[1] SPENCER JR B F, HOSKERE V, NARAZAKI Y. Advances in computer vision-based civil infrastructure inspection and monitoring[J]. Engineering, 2019, 5(2):199-222.
[2] CHELLAPPA R. The changing fortunes of pattern recognition and computer vision[J]. Image and vision computing, 2016, 55:3-5.
[3] 雷明. 机器学习与应用[M]. 北京:清华大学出版社, 2019:26-33.
[4] MARY N A B, DHARMA D. Coral reef image classification employing improved LDP for feature extraction[J]. Journal of visual communication and image representation, 2017, 49:225-242.
[5] YU Hua, YANG Jie. A direct LDA algorithm for high-dimensional data-with application to face recognition[J]. Pattern recognition, 2001, 34(10):2067-2070.
[6] 刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4):622-635
LIU Li, KUANG Gangyao. Overview of image textural feature extraction methods[J]. Journal of image and graphics, 2009, 14(4):622-635
[7] 李磊, 董卓丽. 利用改进图割的彩色图像分割算法[J]. 武汉大学学报·信息科学版, 2014, 39(12):1504-1508
LI Lei, DONG Zhuoli. Color image segmentation using improved graph cuts[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12):1504-1508
[8] 弓晓虹, 郑音飞, 秦佳乐, 等. 基于乘性梯度的医学超声图像边缘检测算法[J]. 浙江大学学报(工学版), 2014, 48(10):1871-1878
GONG Xiaohong, ZHENG Yinfei, QIN Jiale, et al. Multiplicative gradient based edge detection method for medical ultrasound image[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(10):1871-1878
[9] 张桂梅, 张松, 储珺. 一种新的基于局部轮廓特征的目标检测方法[J]. 自动化学报, 2014, 40(10):2346-2355
ZHANG Guimei, ZHANG Song, CHU Jun. A new object detection algorithm using local contour features[J]. Acta automatica sinica, 2014, 40(10):2346-2355
[10] YE Qihong, XIANG Ming, CUI Zhendong. Fingerprint image enhancement algorithm based on two dimension EMD and Gabor filter[J]. Procedia engineering, 2012, 29:1840-1844.
[11] 张丽琼, 王炳和. 基于小波变换的脉象信号特征提取方法[J]. 数据采集与处理, 2004, 19(3):323-328
ZHANG Liqiong, WANG Binghe. Feature extraction methods for pulse signal based on wavelet transform[J]. Journal of data acquisition & processing, 2004, 19(3):323-328
[12] YAGHOOBI H, MANSOURI H, FARSANGI M A E, et al. Determining the fragmented rock size distribution using textural feature extraction of images[J]. Powder technology, 2019, 342:630-641.
[13] MESNIL G, BORDES A, WESTON J, et al. Learning semantic representations of objects and their parts[J]. Machine learning, 2014, 94(2):281-301.
[14] 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1):1-19
HU Yue, LUO Dongyang, HUA Kui, et al. Overview on deep learning[J]. CAAI transactions on intelligent systems, 2019, 14(1):1-19
[15] SERMANET P, EIGEN D, ZHANG Xiang, et al. Overfeat:integrated recognition, localization and detection using convolutional networks[J]. Computer science, 2013.
[16] ZEILER M D, KRISHNAN D, TAYLOR G W, et al. Deconvolutional networks[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010:2528-2535.
[17] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[18] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556, 2014.
[19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:770-778.
[20] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:2261-2269.
[21] 郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12):20-36
ZHENG Yuanpan, LI Guangyang, LI Ye. Survey of application of deep learning in image recognition[J]. Computer engineering and applications, 2019, 55(12):20-36
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]张瑞成,胡绪磊.基于小世界网络的Hopfield联想记忆模型[J].智能系统学报,2014,9(2):214.[doi:10.3969/j.issn.1673-4785.201211050]
 ZHANG Ruicheng,HU Xulei.Research on the hopfield associative memory model based on the small-world network[J].CAAI Transactions on Intelligent Systems,2014,9():214.[doi:10.3969/j.issn.1673-4785.201211050]
[5]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[6]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[7]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[8]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[9]姜英,王延江.REM记忆模型在图像分类识别中的应用[J].智能系统学报,2017,12(3):310.[doi:10.11992/tis.201605010]
 JIANG Ying,WANG Yanjiang.Application of REM memory model in image recognition and classification[J].CAAI Transactions on Intelligent Systems,2017,12():310.[doi:10.11992/tis.201605010]
[10]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[11]刘彪,黄蓉蓉,林和,等.基于卷积神经网络的盲文音乐识别研究[J].智能系统学报,2019,14(1):186.[doi:10.11992/tis.201805002]
 LIU Biao,HUANG Rongrong,LIN He,et al.Research on braille music recognition based on convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2019,14():186.[doi:10.11992/tis.201805002]
[12]王德文,魏波涛.基于孪生变分自编码器的小样本图像分类方法[J].智能系统学报,2021,16(2):254.[doi:10.11992/tis.201906022]
 WANG Dewen,WEI Botao.A small-sample image classification method based on a Siamese variational auto-encoder[J].CAAI Transactions on Intelligent Systems,2021,16():254.[doi:10.11992/tis.201906022]
[13]骆彦龙,毕晓君,吴立成,等.基于改进残差学习的东巴象形文字识别[J].智能系统学报,2022,17(1):79.[doi:10.11992/tis.202112009]
 LUO Yanlong,BI Xiaojun,WU Licheng,et al.Dongba pictographs recognition based on improved residual learning[J].CAAI Transactions on Intelligent Systems,2022,17():79.[doi:10.11992/tis.202112009]
[14]翟永杰,张智柏,王亚茹.基于改进TransGAN的零样本图像识别方法[J].智能系统学报,2023,18(2):352.[doi:10.11992/tis.202111002]
 ZHAI Yongjie,ZHANG Zhibai,WANG Yaru.An image recognition method of zero -shot learning based on an improved TransGAN[J].CAAI Transactions on Intelligent Systems,2023,18():352.[doi:10.11992/tis.202111002]

备注/Memo

收稿日期:2019-06-18。
基金项目:国家自然科学基金项目(61471080/F010408);国家支撑计划(2015BAF20B02);国家留学基金委资助计划(201608210308);辽宁省自然科学基金指导计划(2019-ZD-0108)
作者简介:闫涵,硕士研究生,主要研究方向为图像处理与模式识别;张旭秀,教授,博士后,主要研究方向为图像处理与模式识别、智能控制、信号处理。主持和参与完成国家自然科学基金项目、辽宁省自然科学基金项目9项。发表学术论文40余篇;张净丹,硕士研究生,主要研究方向为图像处理与模式识别
通讯作者:闫涵.E-mail:1346917459@qq.com

更新日期/Last Update: 2021-04-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com