[1]余成宇,李志远,毛文宇,等.一种高效的稀疏卷积神经网络加速器的设计与实现[J].智能系统学报,2020,15(2):323-333.[doi:10.11992/tis.201902007]
 YU Chengyu,LI Zhiyuan,MAO Wenyu,et al.Design and implementation of an efficient accelerator for sparse convolutional neural network[J].CAAI Transactions on Intelligent Systems,2020,15(2):323-333.[doi:10.11992/tis.201902007]
点击复制

一种高效的稀疏卷积神经网络加速器的设计与实现

参考文献/References:
[1] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International journal of computer vision, 2014, 115(3): 211-252.
[2] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// The 3rd International Conference on Learning Representations (ICLR2015).San Diego, CA, 2015.
[3] ZHANG Chen, LI Peng, SUN Guangyu, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks[C]//Proceedings of 2015 ACM/SIGDA International Symposium on Field-programmable Gate Arrays. New York, NY, USA, 2015.
[4] NATALE G, BACIS M, SANTAMBROGIO M D. On how to design dataflow FPGA-based accelerators for convolutional neural networks[C]//2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). Bochum, Germany, 2017.
[5] SHEN Yongming, FERDMAN M, MILDER P. Maximizing CNN accelerator efficiency through resource partitioning[C]//2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). Toronto, ON, Canada, 2016.
[6] MA Yufei, CAO Yu, VRUDHULA S, et al. Optimizing loop operation and dataflow in FPGA acceleration of deep convolutional neural networks[C]//ACM/SIGDA International Symposium on Field-programmable Gate Arrays. Monterey, California, USA, 2017.
[7] SHI Shaohuai, CHU Xiaowen. Speeding up convolutional neural networks by exploiting the sparsity of rectifier units[J]. Computer vision and pattern recognition, 2017, 4: 1-7.
[8] CHEN Y H, KRISHNA T, EMER J S, et al. Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks[J]. IEEE journal of solid-state circuits, 2017, 52(1): 127-138.
[9] ALBERICIO J, JUDD P, HETHERINGTON T, et al. Cnvlutin: ineffectual-neuron-free deep neural network computing[C]//2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). Seoul, South Korea, 2016.
[10] ZHANG Shijin, DU Zidong, ZHANG Lei, et al. Cambricon-X: an accelerator for sparse neural networks[C]//201649th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). Taipei, China, 2016: 1-12.
[11] HAN Song, LIU Xingyu, MAO Huizi, et al. EIE: efficient inference engine on compressed deep neural network[J]. International symposium on computer architecture, 2016, 44(3): 243-254.
[12] Parashar A, RHU M, Mukkara A, et al. SCNN: An accelerator for compressed-sparse convolutional neural networks[C]//The 44th Annual International Symposium. TorontoCanada, 2017.
[13] OLSHAUSEN B A, FIELD D J. Sparse coding with an overcomplete basis set: a strategy employed by V1?[J]. Vision research, 1997, 37(23): 3311-3325.
[14] DAYAN P, ABBOTT L F. Theoretical neuroscience: computational and mathematical modeling of neural systems[M]. Cambridge, USA: The MIT Press, 2001.
[15] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa, Israel, 2010.
[16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, 2012.
[17] HAN Song, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada, 2015: 1135-1143.
[18] HAN Song, MAO Huizi, DALLY W J, et al. Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding[C]//International Conference on Learning Representations, San Juan, Puerto Rico,2016.
[19] MA Yufei, SUDA N, CAO Yu, et al. Scalable and modularized RTL compilation of convolutional neural networks onto FPGA[C]//201626th International Conference on Field Programmable Logic and Applications (FPL). Lausanne, Switzerland, 2016: 1-8.
[20] KU NG. Why systolic architectures[J]. IEEE Computer, 1982, 15(1): 300-309.
[21] GYSEL P, MOTAMEDI M, GHIASI S. Hardware-oriented approximation of convolutional neural networks[J]. Computer Vision and Pattern Recognition, 2016, 10: 1-8.
[22] DORRANCE R, REN Fengbo, MARKOVI? D, et al. A scalable sparse matrix-vector multiplication kernel for energy-efficient sparse-blas on FPGAs[C]//ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. Monterey, California, USA, 2014: 161-170.
[23] QIU Jiantao, WANG Jie, YAO Song, et al. Going deeper with embedded FPGA platform for convolutional neural network[C]//Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. Monterey, California, USA, 2016: 26-35.
[24] SUDA N, CHANDRA V, DASIKA G, et al. Throughput-optimized openCL-based FPGA accelerator for large-scale convolutional neural networks[C]//Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. Monterey, California, USA, 2016.
[25] ZHANG Chen, FANG Zhenman, ZHOU Peipei, et al. Caffeine: towards uniformed representation and acceleration for deep convolutional neural networks[C]//Proceedings of the 35th International Conference on Computer-Aided Design. Austin, Texas, USA, 2016.
相似文献/References:
[1]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11():43.[doi:10.11992/tis.201509018]
[2]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[3]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[4]师亚亭,李卫军,宁欣,等.基于嘴巴状态约束的人脸特征点定位算法[J].智能系统学报,2016,11(5):578.[doi:10.11992/tis.201602006]
 SHI Yating,LI Weijun,NING Xin,et al.A facial feature point locating algorithmbased on mouth-state constraints[J].CAAI Transactions on Intelligent Systems,2016,11():578.[doi:10.11992/tis.201602006]
[5]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[6]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[7]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[8]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[9]王成济,罗志明,钟准,等.一种多层特征融合的人脸检测方法[J].智能系统学报,2018,13(1):138.[doi:10.11992/tis.201707018]
 WANG Chengji,LUO Zhiming,ZHONG Zhun,et al.Face detection method fusing multi-layer features[J].CAAI Transactions on Intelligent Systems,2018,13():138.[doi:10.11992/tis.201707018]
[10]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]

备注/Memo

收稿日期:2019-02-14。
基金项目:国家自然科学基金项目(61701473);中国科学院STS计划项目(KFJ-STS-ZDTP-070);中国科学院国防科技创新基金项目(CXJJ-17-M152);中国科学院战略性先导科技专项(A类)(XDA18040400);北京市科技计划项目(Z181100001518006)
作者简介:余成宇,硕士研究生,主要研究方向为算法硬件加速;李志远,博士研究生,主要研究方向为计算机视觉;毛文宇,助理研究员,主要研究方向为智能计算系统、人工智能算法、信号处理。主持国家自然科学基金项目1项,中科院创新基金项目1项,授权专利1项。发表学术论文10余篇。
通讯作者:毛文宇.E-mail:maowenyu@semi.ac.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com