[1]成怡,肖宏图.融合改进A*算法和Morphin算法的移动机器人动态路径规划[J].智能系统学报,2020,15(3):546-552.[doi:10.11992/tis.201812023]
CHENG Yi,XIAO Hongtu.Mobile-robot dynamic path planning based on improved A* and Morphin algorithms[J].CAAI Transactions on Intelligent Systems,2020,15(3):546-552.[doi:10.11992/tis.201812023]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第3期
页码:
546-552
栏目:
学术论文—机器学习
出版日期:
2020-05-05
- Title:
-
Mobile-robot dynamic path planning based on improved A* and Morphin algorithms
- 作者:
-
成怡, 肖宏图
-
天津工业大学 电气工程与自动化学院,天津 300387
- Author(s):
-
CHENG Yi, XIAO Hongtu
-
School of Electrical Engineering and Automation, University of Tianjin Polytechnic, Tianjin 300387, China
-
- 关键词:
-
移动机器人; A*算法; 改进A*算法; Morphin搜索树算法; 全局路径规划; 局部路径规划; 动态路径规划; 实时避障
- Keywords:
-
mobile robot; A* algorithm; improved A* algorithm; Morphin search tree; global-path planning; local path planning; dynamic path planning; real-time obstacle avoidanc
- 分类号:
-
TP242
- DOI:
-
10.11992/tis.201812023
- 摘要:
-
在动态未知环境下对机器人进行路径规划,传统A*算法可能出现碰撞或者路径规划失败问题。为了满足移动机器人全局路径规划最优和实时避障的需求,提出一种改进A*算法与Morphin搜索树算法相结合的动态路径规划方法。首先通过改进A*算法减少路径规划过程中关键节点的选取,在规划出一条全局较优路径的同时对路径平滑处理。然后基于移动机器人传感器采集的局部信息,利用Morphin搜索树算法对全局路径进行动态的局部规划,确保更好的全局路径的基础上,实时避开障碍物行驶到目标点。MATLAB仿真实验结果表明,提出的动态路径规划方法在时间和路径上得到提升,在优化全局路径规划的基础上修正局部路径,实现动态避障提高机器人达到目标点的效率。
- Abstract:
-
The traditional A* algorithm can experience collisions or path-planning failure in dynamic complicated environments. To meet global optimal requirements and achieve real-time obstacle avoidance in mobile-robot path planning, we propose a novel method that fuses an improved A* algorithm with a Morphin search tree algorithm. First, we improved the A* algorithm by reducing the selection of key nodes in the path-planning process and performing path smoothing when planning the global optimal path. Then, based on the local information obtained by the mobile-robot sensor, the Morphin search tree algorithm is used to dynamically localize the global path. Thus, obstacles are avoided both by ensuring a better global path and by real-time obstacle avoidance as the robot moves to the target. The MATLAB simulation results show that the proposed dynamic path-planning method improves both the time and path. The local path is corrected via the optimized global-path planning, dynamic obstacle avoidance, and the improved efficiency with which the robot reaches the target point.
更新日期/Last Update:
1900-01-01