[1]张英,王骏,鲍国强,等.面向自闭症辅助诊断的无监督模糊特征学习新方法[J].智能系统学报,2019,14(5):882-888.[doi:10.11992/tis.201808005]
ZHANG Ying,WANG Jun,BAO Guoqiang,et al.A novel unsupervised fuzzy feature learning method for computer-aided diagnosis of autism[J].CAAI Transactions on Intelligent Systems,2019,14(5):882-888.[doi:10.11992/tis.201808005]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第5期
页码:
882-888
栏目:
学术论文—机器学习
出版日期:
2019-09-05
- Title:
-
A novel unsupervised fuzzy feature learning method for computer-aided diagnosis of autism
- 作者:
-
张英, 王骏, 鲍国强, 张春香, 王士同
-
江南大学 数字媒体学院, 江苏 无锡 214122
- Author(s):
-
ZHANG Ying, WANG Jun, BAO Guoqiang, ZHANG Chunxiang, WANG Shitong
-
School of Digital Media, Jiangnan University, Wuxi 214122, China
-
- 关键词:
-
自闭症; 功能磁共振成像; 功能连接; 皮尔森相关性; 特征选择; 无监督模糊特征映射; 流形正则化框架; 支持向量机
- Keywords:
-
autism; functional magnetic resonance imaging; functional connectivity; Pearson’s correlation; feature selection; unsupervised fuzzy feature mapping; manifold regularization framework; support vector machine
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.201808005
- 摘要:
-
自闭症患者的行为和认知缺陷与潜在的脑功能异常有关。对于静息态功能磁振图像(functional magnetic resonance imaging, fMRI)高维特征,传统的线性特征提取方法不能充分提取其中的有效信息用于分类。为此,本文面向fMRI数据提出一种新型的无监督模糊特征映射方法,并将其与多视角支持向量机相结合,构建分类模型应用于自闭症的计算机辅助诊断。该方法首先采用多输出TSK模糊系统的规则前件学习方法,将原始特征数据映射到线性可分的高维空间;然后引入流形正则化学习框架,提出新型的无监督模糊特征学习方法,从而得到原输出特征向量的非线性低维嵌入表示;最后使用多视角SVM算法进行分类。实验结果表明:本文方法能够有效提取静息态fMRI数据中的重要特征,在保证模型具有优越且稳定的分类性能的前提下,还可以提高模型的可解释性。
- Abstract:
-
Studies have shown that the behavioral and cognitive defect of patients with autism have a close relationship with potential brain dysfunction. For the high-dimensional rs-fMRI features, traditional linear feature extraction method cannot always discriminatively extract the important information for classification. To this end, a novel method for fMRI data based on both unsupervised fuzzy feature mapping and multi-view support vector machine is proposed in this study, which aims to build a classification model for computer aided diagnosis of autism. In this method, the original features are first mapped to a linear separable high-dimensional space using the rule precursor learning method of multi-output Takagi-Sugeno-Kang (TSK) fuzzy system; then the manifold regularization learning framework is introduced. On the basis of this, a novel unsupervised fuzzy feature learning method is used to obtain the nonlinear low-dimensional embedding representation of the original output eigenvector. Finally, a multi-view support vector machine (SVM) algorithm is used for classification. The experimental results show that the proposed method can effectively extract important features from the rs-fMRI data and improve the interpretability of the model on the premise of ensuring a superior and stable classification performance of the model.
备注/Memo
收稿日期:2018-08-08。
基金项目:江苏省自然科学基金项目(BK20181339).
作者简介:张英,女,1992年生,硕士研究生,主要研究方向为模式识别与数据挖掘;王骏,男,1978年生,副教授,博士,主要研究方向为智能计算与数据挖掘。主持国家自然科学基金项目1项,江苏省自然科学基金项目1项,申请并获得国家发明专利5项。于2016年获江苏省高校科研成果自然科学一等奖。发表学术论文50余篇;鲍国强,男,1992年生,硕士研究生,主要研究方向为智能计算与模式识别。
通讯作者:王骏.E-mail:wangjun_sytu@hotmail.com
更新日期/Last Update:
1900-01-01