[1]潘登,毕晓君.基于Transformer模型的自闭症功能磁共振图像分类[J].智能系统学报,2025,20(2):400-406.[doi:10.11992/tis.202402025]
 PAN Deng,BI Xiaojun.Classification of functional magnetic resonance images for autism based on Transformer model[J].CAAI Transactions on Intelligent Systems,2025,20(2):400-406.[doi:10.11992/tis.202402025]
点击复制

基于Transformer模型的自闭症功能磁共振图像分类

参考文献/References:
[1] LYALL K, CROEN L, DANIELS J, et al. The changing epidemiology of autism spectrum disorders[J]. Annual review of public health, 2017, 38: 81-102.
[2] NICKEL R E, HUANG-STORMS L. Early identification of young children with autism spectrum disorder[J]. Indian journal of pediatrics, 2017, 84(1): 53-60.
[3] CHUNG T, CORNELIUS J, CLARK D, et al. Greater prevalence of proposed ICD-11 alcohol and cannabis dependence compared to ICD-10, DSM-IV, and DSM-5 in treated adolescents[J]. Alcoholism, clinical and experimental research, 2017, 41(9): 1584-1592.
[4] KHODATARS M, SHOEIBI A, SADEGHI D, et al. Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review[J]. Computers in biology and medicine, 2021, 139: 104949.
[5] CROSSON B, FORD A, MCGREGOR K M, et al. Functional imaging and related techniques: an introduction for rehabilitation researchers[J]. Journal of rehabilitation research and development, 2010, 47(2): vii-xxxiv.
[6] GREICIUS M. Resting-state functional connectivity in neuropsychiatric disorders[J]. Current opinion in neurology, 2008, 21(4): 424-430.
[7] EL-GAZZAR A, QUAAK M, CERLIANI L, et al. A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification study[M]//OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging. Cham: Springer International Publishing, 2019: 95-102.
[8] SHERKATGHANAD Z, AKHONDZADEH M, SALARI S, et al. Automated detection of autism spectrum disorder using a convolutional neural network[J]. Frontiers in neuroscience, 2020, 13: 1325.
[9] 郭磊, 王骏, 丁维昌, 等. 4D卷积神经网络的自闭症功能磁共振图像分类[J]. 智能系统学报, 2021, 16(6): 1021-1029.
GUO Lei, WANG Jun, DING Weichang, et al. Classification of the functional magnetic resonance image of autism based on 4D convolutional neural network[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1021-1029.
[10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000–6010.
[11] DENG Xin, ZHANG Jiahao, LIU Rui, et al. Classifying ASD based on time-series fMRI using spatial–temporal transformer[J]. Computers in biology and medicine, 2022, 151: 106320.
[12] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2020-10-22)[2024-02-26]. https://arxiv.org/abs/2010.11929.
[13] ZHENG Sixiao, LU Jiachen, ZHAO Hengshuang, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 6877-6886.
[14] LI Guang, ZHU Linchao, LIU Ping, et al. Entangled transformer for image captioning[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8928-8937.
[15] PARMAR N, VASWANI A, USZKOREIT J, et al. Image transformer[C]//International conference on machine learning. Stockholm: PMLR, 2018: 4055-4064.
[16] HONG Danfeng, HAN Zhu, YAO Jing, et al. SpectralFormer: rethinking hyperspectral image classification with transformers[J]. IEEE transactions on geoscience and remote sensing, 2021, 60: 5518615.
[17] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Computer Vision–ECCV 2020. Cham: Springer International Publishing, 2020: 213-229.
[18] BEAL J, KIM E, TZENG E, et al. Toward transformer-based object detection[EB/OL]. (2020-12-17) [2024-02-26]. https://arxiv.org/abs/2012.09958.
[19] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992-10002.
[20] FUSHIKI T. Estimation of prediction error by using K-fold cross-validation[J]. Statistics and computing, 2011, 21(2): 137-146.
[21] MAENNER MATTHEW J, MARSHALYN Y A, KIM V N B, et al. Development of a machine learning algorithm for the surveillance of autism spectrum disorder[J]. PLoS One, 2016, 11(12): e0168224.
[22] ABRAHAM A, MILHAM M P, DI MARTINO A, et al. Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example[J]. NeuroImage, 2017, 147: 736-745.
[23] YAN Chaogan, WANG Xindi, ZUO Xinian, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351.
[24] SCHAEFER A, KONG Ru, GORDON E M, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI[J]. Cerebral cortex, 2018, 28(9): 3095-3114.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[11]程艳,胡建生,赵松华,等.融合Transformer和交互注意力网络的方面级情感分类模型[J].智能系统学报,2024,19(3):728.[doi:10.11992/tis.202303016]
 CHENG Yan,HU Jiansheng,ZHAO Songhua,et al.Aspect-level sentiment classification model combining Transformer and interactive attention network[J].CAAI Transactions on Intelligent Systems,2024,19():728.[doi:10.11992/tis.202303016]
[12]黄昱程,肖子旺,武丹凤,等.时空融合与判别力增强的孪生网络目标跟踪方法[J].智能系统学报,2024,19(5):1218.[doi:10.11992/tis.202306005]
 HUANG Yucheng,XIAO Ziwang,WU Danfeng,et al.Spatiotemporal fusion and discriminative augmentation for improved Siamese tracking[J].CAAI Transactions on Intelligent Systems,2024,19():1218.[doi:10.11992/tis.202306005]
[13]丁钰,毕晓君.融合样本关系优化和重排序的换衣行人重识别[J].智能系统学报,2025,20(1):101.[doi:10.11992/tis.202404005]
 DING Yu,BI Xiaojun.Clothes-changing person re-identification by sample relationship optimization and re-ranking[J].CAAI Transactions on Intelligent Systems,2025,20():101.[doi:10.11992/tis.202404005]

备注/Memo

收稿日期:2024-2-26。
基金项目:国家自然科学基金重点项目(62236011); 国家社科基金重大项目(20&ZD279).
作者简介:潘登,硕士研究生,主要研究方向为医学图像分类、深度学习。E-mail:984434942@qq.com;毕晓君,教授,博士生导师,主要研究方向为智能信息处理、数字图像处理、机器学习。主持国家和省部级科研项目10余项,获省部级科学技术一等奖1项,省部级科学技术二等奖6项,发表学术论文200余篇。E-mail:bixiaojun@hrbeu.edu.cn。
通讯作者:毕晓君. E-mail:bixiaojun@hrbeu.edu.cn

更新日期/Last Update: 2025-03-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com