[1]秦海菲,杜军平.酒店在线评论数据的特征挖掘[J].智能系统学报,2018,13(6):1006-1014.[doi:10.11992/tis.201806016]
                                    
                                     QIN Haifei,DU Junping.Feature mining based on online hotel review[J].CAAI Transactions on Intelligent Systems,2018,13(6):1006-1014.[doi:10.11992/tis.201806016]
                                
                                点击复制
                                
                                
                             
                            
                                
                                    《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
                                    13
                                    期数:
                                    2018年第6期
                                    页码:
                                    1006-1014
                                    栏目:
                                    学术论文—人工智能基础
                                    出版日期:
                                    2018-10-25
                                
                                
                                    - Title:
 
                                    - 
                                        Feature mining based on online hotel review
 
                                
                                
                                
                                    - 作者:
 
                                    - 
                                        秦海菲1, 杜军平2
 
                                    - 
                                        1. 楚雄师范学院 信息科学与技术学院, 云南 楚雄 675000;
2. 北京邮电大学 计算机学院, 北京 100876 
                                
                                
                                    - Author(s):
 
                                    - 
                                        QIN Haifei1, DU Junping2
 
                                    - 
                                        1. School of Information Science and Technology, Chuxiong Normal University, Chuxiong 675000, China;
2. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China 
                                    - 
                                
 
                                
                                    - 关键词:
 
                                    - 
                                        酒店; 在线点评; 数据获取; 特征抽取; 特征挖掘; 聚类分析; 分类; 智能推荐
 
                                
                                
                                    - Keywords:
 
                                    - 
                                        hotel; online review; data capture; feature extract; feature mining; cluster analysis; classification; intelligent recommendation
 
                                
                                
                                    - 分类号:
 
                                    - 
                                        TP391
 
                                
                                
                                    - DOI:
 
                                    - 
                                        10.11992/tis.201806016
 
                                
                                
                                
                                    - 摘要:
 
                                    - 
                                        论文以酒店在线评论数据为研究对象,对酒店在线评论数据的特征挖掘进行了研究。论文首先从酒店在线评论数据的获取出发,经过数据清洗、词性分析、特征抽取、指标确定、特征筛选、特征确定、特征校验几个环节,实现了酒店在线评论数据特征挖掘的目的。论文以词频为基础,融合了词性分析、聚类分析等方法,利用词频数(TF)、词频率(TF1)、词频权重(TTW)、评论频率(DF)、逆文档频率(IDF)和TF1-IDF等指标对候选特征词进行降维,得出酒店在线评论数据的特征,并对特征词进行校验,完成了酒店在线评论数据的特征挖掘的过程。论文将为以评论为依据的客户分类、酒店分类、智能推荐奠定基础。
 
                                
                                
                                    - Abstract:
 
                                    - 
                                        In this study, the feature mining of online hotel review data is investigated. First, online hotel reviews data were obtained. To mine features from the review data, data cleaning, part-of-speech analysis, feature extraction, index determination, feature selection, feature determination, feature checking were carried out. Based on the word frequency, integrating part-of-speech analysis, and cluster analysis, the word frequency (TF), word frequency rate (TF1), word frequency weight (TTW), comment frequency (DF), inverse document frequency (IDF), and TF1-IDF of candidate feature words were applied to reduce dimension. The online hotel review data features were obtained, and then the feature words were verified. This paper will lay a solid foundation for the classification of hotels and customers and intelligent recommendation based on online reviews.
 
                                
                             
                            
                                
                                    备注/Memo
                                
                                    收稿日期:2018-06-05。
基金项目:国家自然科学基金项目(61320106006,61532006,61772083).
作者简介:秦海菲,女,1980年生,副教授,主要研究方向为数据库、数据仓库、数据挖掘;杜军平,女,1963年生,教授,博士生导师,主要研究方向为人工智能、社交网络分析、数据挖掘、运动图像处理,主持国家"863"、"973"计划项目、国家自然科学基金重点项目、国家自然科学基金重大国际合作项目、北京市自然科学基金重点项目等多项,发表学术论文多篇。
通讯作者:杜军平.E-mail:junpingdu@126.com
                             
                            
                                更新日期/Last Update:
                                2018-12-25