[1]王鈃润,聂秀山,杨帆,等.基于排序学习的视频摘要[J].智能系统学报,2018,13(6):921-927.[doi:10.11992/tis.201806013]
 WANG Xingrun,NIE Xiushan,YANG Fan,et al.Video summarization based on learning to rank[J].CAAI Transactions on Intelligent Systems,2018,13(6):921-927.[doi:10.11992/tis.201806013]
点击复制

基于排序学习的视频摘要

参考文献/References:
[1] GONG Boqing, CHAO Weilun, GRAUMAN K, et al. Diverse sequential subset selection for supervised video summarization[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014:2069-2077.
[2] 李佳桐. 自适应视频摘要算法研究[D]. 合肥:中国科学技术大学, 2017. LI Jiatong. Research on adaptive video summarization algorithms[D]. Hefei:University of Science and Technology of China, 2017.
[3] FURINI M, GERACI F, MONTANGERO M, et al. STIMO:STIll and MOving video storyboard for the web scenario[J]. Multimedia tools and applications, 2010, 46(1):47-69.
[4] GUAN Genliang, WANG Zhiyong, LU Shiyang, et al. Keypoint-based keyframe selection[J]. IEEE transactions on circuits and systems for video technology, 2013, 23(4):729-734.
[5] LI Xuelong, ZHAO Bin, LU Xiaoqiang. A general framework for edited video and raw video summarization[J]. IEEE transactions on image processing, 2017, 26(8):3652-3664.
[6] CHAKRABORTY S, TICKOO O, IYER R. Adaptive keyframe selection for video summarization[C]//Proceedings of 2015 IEEE Winter Conference on Applications of Computer Vision. Waikoloa, USA, 2015:702-709.
[7] HU Tongling, LI Zechao, SU Weiyang, et al. Unsupervised video summaries using multiple features and image quality[C]//Proceedings of 2017 IEEE Third International Conference on Multimedia Big Data. Laguna Hills, USA, 2017:117-120.
[8] SUN Ke, ZHU Jiasong, LEI Zhuo, et al. Learning deep semantic attributes for user video summarization[C]//Proceedings of 2017 IEEE International Conference on Multimedia and Expo. Hong Kong, China, 2017:643-648.
[9] CAO Yunbo, XU Jun, LIU Tieyan, et al. Adapting ranking SVM to document retrieval[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle, Washington, USA, 2006:186-193.
[10] 毕晓君, 冯雪赟. 基于改进深度学习模型C-GRBM的人体行为识别[J]. 哈尔滨工程大学学报, 2018, 39(1):156-162 BI Xiaojun, FENG Xueyun. Human action recognition based on improved depth learning model C-GRBM[J]. Journal of Harbin engineering university, 2018, 39(1):156-162
[11] SONG Yale, VALLMITJANA J, STENT A, et al. Tvsum:summarizing web videos using titles[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:5179-5187.
[12] ZHAO Bin, XING E P. Quasi real-time summarization for consumer videos[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:2513-2520.

备注/Memo

收稿日期:2018-06-06。
基金项目:国家自然科学基金项目(61671274,61573219);中国博士后基金项目(2016M592190);山东省重点研发计划项目(2017CXGC1504);山东省高校优势学科人才团队培育计划.
作者简介:王鈃润,女,1994年生,主要研究方向为机器学习、多媒体信息处理;聂秀山,男,1981年生,教授,博士,主要研究方向为机器学习、多媒体信息处理。中国计算机学会人工智能与模式识别专委会委员、中国人工智能学会机器学习专委会通讯委员,中国计算机学会计算机视觉专委会委员。主持国家自然科学基金面上项目1项、青年项目1项,发表学术论文30余篇;杨帆,男,1983年生,主要研究方向为机器学习、凸优化、生物医学。
通讯作者:聂秀山.E-mail:niexiushan@163.com

更新日期/Last Update: 2018-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com