[1]孙必慎,石武祯,姜峰.计算视觉核心问题:自然图像先验建模研究综述[J].智能系统学报,2019,14(1):71-81.[doi:10.11992/tis.201804019]
 SUN Bishen,SHI Wuzhen,JIANG Feng.Core problem in computer vision: survey of natural image prior models[J].CAAI Transactions on Intelligent Systems,2019,14(1):71-81.[doi:10.11992/tis.201804019]
点击复制

计算视觉核心问题:自然图像先验建模研究综述

参考文献/References:
[1] PARK S, KONKLE T, OLIVA A. Parametric coding of the size and clutter of natural scenes in the human brain[J]. Cerebral cortex, 2015, 25(7):1792-1805.
[2] F?LDIáK P. Neural control:closed-loop human brain reading[J]. Current biology, 2011, 21(2):80-81.
[3] KAY K N, GALLANT J L. I can see what you see[J]. Nature neuroscience, 2009, 12(3):245.
[4] KIM M K, KIM M, OH E, et al. A review on the computational methods for emotional state estimation from the human EEG[J]. Computational and mathematical methods in medicine, 2013, 22(12):3127-3142.
[5] JIAN Muwei, QI Qiang, DONG Junyu, et al. Saliency detection using quaternionic distance based weber local descriptor and level priors[J]. Multimedia tools and applications, 2018, 77(11):14343-14360.
[6] JIAN Muwei, LAM K M, DONG Junyu, et al. Visual-patch-attention-aware saliency detection[J]. IEEE transactions on cybernetics, 2015, 45(8):1575-1586.
[7] JIAN Muwei, LAM K M, DONG Junyu. Facial-feature detection and localization based on a hierarchical scheme[J]. Information sciences, 2014, 262(3):1-14.
[8] JIAN Muwei, QI Qiang, DONG Junyu, et al. Integrating QDWD with pattern distinctness and local contrast for underwater saliency detection[J]. Journal of visual communication and image representation, 2018, 53:31-41.
[9] TREVES A, TASHIRO A, WITTER M P, et al. What is the mammalian dentate gyrus good for?[J]. Neuroscience, 2008, 154(4):1155-1172.
[10] CHANTAS G, GALATSANOS N P, MOLINA R, et al. Variational bayesian image restoration with a product of spatially weighted total variation image priors[J]. IEEE transactions on image processing, 2010, 19(2):351-362.
[11] CHAN T F, OSHER S, SHEN J. The digital TV filter and nonlinear denoising[J]. IEEE transactions on image processing, 2001, 10(2):231-241.
[12] ZHU Songchun, WU Yingnian, MUMFORD D. Filters, random fields and maximum entropy (FRAME):towards a unified theory for texture modeling[J]. International journal of computer vision, 1998, 27(2):107-126.
[13] FREEMAN W T, PASZTOR E C, CARMICHAEL O T. Learning low-level vision[J]. International journal of computer vision, 2000, 40(1):25-47.
[14] WELLING M, OSINDERO S, HINTON G E. Learning sparse topographic representations with products of student-t distributions[C]//Advances in Neural Information Processing Systems. Vancouver, Canada, 2003:1383-1390.
[15] ROTH S, BLACK M J. Fields of experts[J]. International journal of computer vision, 2009, 82:205.
[16] SUN Deqing, ROTH S, BLACK M J. A quantitative analysis of current practices in optical flow estimation and the principles behind them[J]. International journal of computer vision, 2014, 106(2):115-137.
[17] HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex[J]. The journal of physiology, 1962, 160(1):106-154.
[18] XU Mai, LI Shengxi, LU Jianhua, et al. Compressibility constrained sparse representation with learnt dictionary for low bit-rate image compression[J]. IEEE transactions on circuits and systems for video technology, 2014, 24(10):1743-1757.
[19] SUN Yipeng, TAO Xiaoming, LI Yang, et al. Dictionary learning for image coding based on multisample sparse representation[J]. IEEE transactions on circuits and systems for video technology, 2014, 24(11):2004-2010.
[20] SUN Fuming, TANG Jinhui, LI Haojie, et al. Multi-label image categorization with sparse factor representation[J]. IEEE transactions on image processing, 2014, 23(3):1028-1037.
[21] RABBANI H, GAZOR S. Local probability distribution of natural signals in sparse domains[J]. International journal of adaptive control and signal processing, 2014, 28(1):52-62.
[22] ELHAMIFAR E, VIDAL R. Sparse subspace clustering:Algorithm, theory, and applications[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(11):2765-2781.
[23] 肖迪, 马青青, 王兰, 等. 基于稀疏表示的云协助安全数字水印技术[J]. 信息网络安全, 2017, 37(1):1-7 XIAO Di, MA Qingqing, WANG Lan, et al. Cloud-assisted secure digital watermarking based on sparse representation[J]. Netinfo security, 2017, 37(1):1-7
[24] 熊金波, 马蓉, 张媛媛, 等. 面向社交网络的图片信息隐藏方法与实现[J]. 信息网络安全, 2017, 37(3):6-13 XIONG Jinbo, MA Rong, ZHANG Yuanyuan, et al. Image information hiding method and implementation for social network[J]. Netinfo security, 2017, 37(3):6-13
[25] 徐杰, 贺敏, 包秀国. 基于压缩感知的视频台标识别研究[J]. 信息网络安全, 2015(5):77-81 XU Jie, HE Min, BAO Xiuguo. Research on TV logo detection based on compressive sensing[J]. Netinfo security, 2015(5):77-81
[26] 任栋, 宋伟, 于京, 等. 特殊视频内容检测算法研究综述[J]. 信息网络安全, 2016(9):184-191 REN Dong, SONG Wei, YU Jing, et al. A survey on special video content detection algorithms[J]. Netinfo security, 2016(9):184-191
[27] PROTTER M, ELAD M, TAKEDA H, et al. Generalizing the nonlocal-means to super-resolution reconstruction[J]. IEEE transactions on image processing, 2009, 18(1):36-51.
[28] TALEBI H, MILANFAR P. Global image denoising[J]. IEEE transactions on image processing, 2014, 23(2):755-768.
[29] RAM I, ELAD M, COHEN I. Image processing using smooth ordering of its patches[J]. IEEE transactions on image processing, 2013, 22(7):2764-2774.
[30] GILBOA G, OSHER S. Nonlocal operators with applications to image processing[J]. Multiscale modeling and simulation, 2008, 7(3):1005-1028.
[31] ZHANG Lei, DONG Weisheng, ZHANG D, et al. Two-stage image denoising by principal component analysis with local pixel grouping[J]. Pattern recognition, 2010, 43(4):1531-1549.
[32] MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration[C]//Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan, 2009:2272-2279.
[33] JUNG M, BRESSON X, CHAN T F, et al. Nonlocal Mumford-Shah regularizers for color image restoration[J]. IEEE transactions on image processing, 2011, 20(6):1583-1598.
[34] SUN Jian, TAPPEN M F. Learning non-local range Markov random field for image restoration[C]//CVPR 2011. Colorado Springs, CO, USA, 2011:2745-2752.
[35] GAO Xinwei, ZHANG Jian, JIANG Feng, et al. Image interpolation via local autoregressive and nonlocal 3-D sparse regularization[C]//Visual Communications and Image Processing. San Diego, USA, 2012.
[36] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 13th European Conference On Computer Vision. Cham, Germany, 2014:184-199.
[37] DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(2):295-307.
[38] DONG Chao, LOY C C, TANG Xiaoou. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:391-407.
[39] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016:1646-1654.
[40] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, United States, 2016:770-778.
[41] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers:surpassing human-level performance on imagenet classification[C]//Proceedings of IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1026-1034.
[42] WANG Zhaowen, LIU Ding, YANG Jianchao, et al. Deep networks for image super-resolution with sparse prior[C]//Proceedings of IEEE International Conference on Computer Vision. Santiago, Chile, 2015:370-378.
[43] GU S, ZUO W, XIE Q, et al. Convolutional sparse coding for image super-resolution[C]//IEEE International Conference on Computer Vision. IEEE Computer Society, 2015:1823-1831.
[44] LIANG Yudong, WANG Jinjun, ZHOU Sanping, et al. Incorporating image priors with deep convolutional neural networks for image super-resolution[J]. Neurocomputing, 2016, 194:340-347.
[45] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA, USA, 2014:2672-2680.
[46] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, 2017:105-114
[47] JOHNSON J, ALAHI A, FEI-FEI L. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:694-711.
[48] STANKOVI? V, STANKOVI? L, CHENG S. Compressive video sampling[C]//Processing of 16th European Signal Processing Conference. Lausanne, Switzerland, 2008:1–5.
[49] PARK J Y, WAKIN M B. A multiscale framework for compressive sensing of video[C]//Processing of Picture Coding Symposium. Chicago, USA, 2009:1-4.
[50] PRADES-NEBOT J, MA Yi, HUANG T. Distributed video coding using compressive sampling[C]//Processing of Picture Coding Symposium. Chicago, USA, 2009:1-4.
[51] CHEN H W, KANG Liwei, LU C S. Dictionary learning-based distributed compressive video sensing[C]//Processing of Picture Coding Symposium. Nagoya, Japan, 2010:210-213.
[52] WRIGHT S J, NOWAK R D, FIGUEIREDO M A T. Sparse reconstruction by separable approximation[J]. IEEE transactions on signal processing, 2009, 57(7):2479-2493.
[53] PONG K H, LAM K M. Multi-resolution feature fusion for face recognition[J]. Pattern recognition, 2014, 47(2):556-567.
[54] PYATYKH S, HESSER J. Salt and pepper noise removal in binary images using image block prior probabilities[J]. Journal of visual communication and image representation, 2014, 25(5):748-754.
[55] YIN Zhouping, ZHANG Hongmei. Research on saliency prior based image processing algorithm[J]. Journal of multimedia, 2014, 9(2):294-301.
[56] JIANG Feng, TAO Wen, LIU Shaohui, et al. An end-to-end compression framework based on convolutional neural networks[J]. IEEE transactions on circuits and systems for video technology, 2018, 28(10):3007-3018.
[57] ZHAO Lijun, BAI Huihui, WANG Aahong, et al. Learning a virtual codec based on deep convolutional neural network to compress image[EB/OL]. arXiv preprint arXiv:1712.05969, 2017. https://arxiv.org/abs/1712.05969
[58] SULLIVAN G J, OHM J R, HAN W J, et al. Overview of the high efficiency video coding (HEVC) standard[J]. IEEE transactions on circuits and systems for video technology, 2012, 22(12):1649-1668.
[59] LI Jiahao, LI Bin, XU Jizheng, et al. Intra prediction using fully connected network for video coding[C]//IEEE International Conference on Image Processing. Beijing, China, 2017:1-5.
[60] YAN Ning, LIU Dong, LI Houqiang, et al. A convolutional neural network approach for half-pel interpolation in video coding[C]//Proceedings of 2017 International Symposium on Circuits and Systems. Baltimore, MD, USA, 2017:1-4.
[61] LIU Zhenyu, YU Xianyu, CHEN Shaolin, et al. CNN oriented fast HEVC intra CU mode decision[C]//IEEE International Symposium on Circuits and Systems. Montreal, QC, Canada, 2016:2270-2273.
[62] LIU Dong, MA Haichuan, XIONG Zhiwei, et al. CNN-Based DCT-like transform for image compression[C]//Proceedings of the 24th International Conference on Multimedia Modeling. Bangkok, Thailand, 2018:61-72.
[63] SONG Rui, LIU Dong, LI Houqiang, et al. Neural network-based arithmetic coding of intra prediction modes in HEVC[C]//IEEE Visual Communications and Image Processing Conference. Petersburg, FL, USA, 2017:1–4.
[64] DAI Yuanying, LIU Dong, WU Feng. A convolutional neural network approach for post-processing in HEVC intra coding[C]//Proceedings of the 23rd International Conference on Multimedia Modeling. Reykjavik, Iceland, 2017:28-39.
[65] TODERICI G, O’ MALLEY S M, HWANG S J, et al. Variable rate image compression with recurrent neural networks[EB/OL]. arXiv preprint arXiv:1511.06085, 2016. https://arxiv.org/abs/1511.06085
[66] TODERICI G, VINCENT D, JOHNSTON N, et al. Full resolution image compression with recurrent neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA, 2017:5435-5443.
[67] JOHNSTON N, VINCENT D, MINNEN D, et al. Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks[EB/OL]. arXiv preprint arXiv:1703.10114, 2017. https://arxiv.org/abs/1703.10114
[68] THEIS L, SHI Wenzhe, CUNNINGHAM A, et al. Lossy image compression with compressive autoencoders[EB/OL]. arXiv preprint arXiv:1703.00395, 2017. https://arxiv.org/abs/1703.00395
[69] BALLé J, LAPARRA V, SIMONCELLI E P. End-to-end optimization of nonlinear transform codes for perceptual quality[C]//Proceedings of 2016 Picture Coding Symposium. Nuremberg, Germany, 2016:1-5.
[70] AGUSTSSON E, MENTZER F, TSCHANNEN M, et al. Soft-to-hard vector quantization for end-to-end learning compressible representations[C]//Advances in Neural Information Processing Systems. Long Beach, CA, USA, 2017:1141-1151.
[71] LI Mu, ZUO Wangmeng, GU Shuhang, et al. Learning convolutional networks for content-weighted image compression[EB/OL]. arXiv preprint arXiv:1703.10553, 2017. https://arxiv.org/abs/1703.10553
[72] RIPPEL O, BOURDEV L. Real-time adaptive image compression[EB/OL]. arXiv preprint arXiv:1705.05823, 2017. https://arxiv.org/abs/1705.05823
[73] BAIG M H, KOLTUN V, TORRESANI L. Learning to Inpaint for Image Compression[C]//Advances in Neural Information Processing Systems. Long Beach, CA, USA, 2017:1246-1255.
[74] TIMOFTE R, DE SMET V, VAN GOOL L. A+:adjusted anchored neighborhood regression for fast super-resolution[C]//Asian Conference on Computer Vision. Springer, Cham, 2014:111?126.
[75] SCHULTER S, LEISTNER C, BISCHOF H. Fast and accurate image upscaling with super-resolution forests[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR2015. Boston, Massachusetts, USA, 2015:3791–3799.
[76] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(2):295?307.
[77] WANG Z, LIU D, YANG J, et al. Deeply improved sparse coding for image super-resolution. arXiv preprint[EB/OL]. arXiv preprint arXiv:1507.08905, 2015. https://arxiv.org/abs/1507.08905v1
[78] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision. Springer, Cham, 2016:391?407.
[79] SHI W, JIANG F, ZHANG F, et al. Single image super-resolution with dilated convolution based multi-scale information learning inception module[C]//IEEE International Conference on in Image Processing (ICIP2017). Beijing, China, 2017:1?5.
[80] MUN S, FOWLER J E. Block compressed sensing of images using directional transforms[C]//200916th IEEE International Conference on Image Processing IEEE, 2009:3021?3024.
[81] LI, C, YIN W, ZHANG Y. TVAL3:TV minimization by augmented lagrangian and alternating direction algorithm[EB/OL]. https://www.caam.rice.edu/~optimization/L1/TVAL3/
[82] CHEN C, TRAMEL E W, FOWLER J E. Compressed-sensing recovery of images and video using multihypothesis predictions[C]//2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers. IEEE, 2011:1193?1198.
[83] ZHANG J, ZHAO D, ZHAO C, et al. Compressed sensing recovery via collaborative sparsity[C]//Processing of 2012 Data Compression Conference. Snowbird, Utah, USA, 2012:287–296.
[84] ZHANG J, ZHAO D, GAO W. Group-based sparse representation for image restoration[J]. IEEE transactions on image processing, 2014, 23(8):3336?3351.
[85] SHI W, JIANG F, ZHANG S, et al. Deep networks for compressed image sensing[C]//Processing of 2017 IEEE International Conference on Multimedia and Expo. Hongkong, China, 2017:877–882.
相似文献/References:
[1]夏 凡,王 宏.基于局部异常行为检测的欺骗识别研究[J].智能系统学报,2007,2(5):12.
 XIA Fan,WANG Hong.Methodologies for deception detection based on abnormal b ehavior[J].CAAI Transactions on Intelligent Systems,2007,2():12.
[2]杨 戈,刘 宏.视觉跟踪算法综述[J].智能系统学报,2010,5(2):95.
 YANG Ge,LIU Hong.Survey of visual tracking algorithms[J].CAAI Transactions on Intelligent Systems,2010,5():95.
[3]刘宏,李哲媛,许超.视错觉现象的分类和研究进展[J].智能系统学报,2011,6(1):1.
 LIU Hong,LI Zheyuan,XU Chao.The categories and research advances of visual illusions[J].CAAI Transactions on Intelligent Systems,2011,6():1.
[4]叶果,程洪,赵洋.电影中吸烟活动识别[J].智能系统学报,2011,6(5):440.
 YE Guo,CHENG Hong,ZHAO Yang.moking recognition in movies[J].CAAI Transactions on Intelligent Systems,2011,6():440.
[5]史晓鹏,何为,韩力群.采用Hough变换的道路边界检测算法[J].智能系统学报,2012,7(1):81.
 SHI Xiaopeng,HE Wei,HAN Liqun.A road edge detection algorithm based on the Hough transform[J].CAAI Transactions on Intelligent Systems,2012,7():81.
[6]顾照鹏,刘宏.单目视觉同步定位与地图创建方法综述[J].智能系统学报,2015,10(4):499.[doi:10.3969/j.issn.1673-4785.201503003]
 GU Zhaopeng,LIU Hong.A survey of monocular simultaneous localization and mapping[J].CAAI Transactions on Intelligent Systems,2015,10():499.[doi:10.3969/j.issn.1673-4785.201503003]
[7]赵军,於俊,汪增福.基于改进逆向运动学的人体运动跟踪[J].智能系统学报,2015,10(4):548.[doi:10.3969/j.issn.1673-4785.201403032]
 ZHAO Jun,YU Jun,WANG Zengfu.Human motion tracking based on an improved inverse kinematics[J].CAAI Transactions on Intelligent Systems,2015,10():548.[doi:10.3969/j.issn.1673-4785.201403032]
[8]姬晓飞,王昌汇,王扬扬.分层结构的双人交互行为识别方法[J].智能系统学报,2015,10(6):893.[doi:10.11992/tis.201505006]
 JI Xiaofei,WANG Changhui,WANG Yangyang.Human interaction behavior-recognition method based on hierarchical structure[J].CAAI Transactions on Intelligent Systems,2015,10():893.[doi:10.11992/tis.201505006]
[9]方鹏,李贤,汪增福.运用核聚类和偏最小二乘回归的歌唱声音转换[J].智能系统学报,2016,11(1):55.[doi:10.11992/tis.201506022]
 FANG Peng,LI Xian,WANG Zengfu.Conversion of singing voice based on kernel clustering and partial least squares regression[J].CAAI Transactions on Intelligent Systems,2016,11():55.[doi:10.11992/tis.201506022]
[10]李雪,蒋树强.智能交互的物体识别增量学习技术综述[J].智能系统学报,2017,12(2):140.[doi:10.11992/tis.201701006]
 LI Xue,JIANG Shuqiang.Incremental learning and object recognition system based on intelligent HCI: a survey[J].CAAI Transactions on Intelligent Systems,2017,12():140.[doi:10.11992/tis.201701006]

备注/Memo

收稿日期:2018-04-15。
基金项目:国家自然科学基金项目(61572155,61672188,61272386);国家重点基础研究发展计划项目(2015CB351804).
作者简介:孙必慎,男,1976年生,高级工程师,主要研究方向为光电火控、侦察、预警及测量技术研究。主持多个国家重点型号装备研制,多次获得国家、部级技术进步奖。发表学术论文50余篇;石武祯,男,1989年生,博士研究生,主要研究方向为图像处理、计算机视觉以及图像编解码。发表学术论文10余篇;姜峰,男,1978年生,教授,博士生导师,主要研究方向为图像处理、计算机视觉以及人工智能。主持项目20余项,多次获得省部级技术进步奖。发表学术论文100余篇。
通讯作者:姜峰.E-mail:fjiang@hit.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com