[1]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894-898.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12(6):894-898.[doi:10.11992/tis.201706037]
点击复制

基于自编码器的特征迁移算法

参考文献/References:
[1] HINTON G E, ZEMEL R S. Autoencoder minimum description length and helmholtz free energy[C]//Conference on Neural Information Processing Systems(NIPS). Denver, USA, 1993: 3-10.
[2] SOCHER R, HUANG E H, PENNINGTON J, et al. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection[C]//Proc Neural Information and Processing Systems. Granada, Spain, 2011: 801-809.
[3] SWERSKY K, RANZATO M, BUCHMAN D, et al. On score matching for energy based models: generalizing autoencoders and simplifying deep learning[C]//Proc Int’l Conf Machine Learning Bellevue. Washington, USA, 2011: 1201-1208.
[4] FISCHER A, IGEL C. An introduction to restricted Boltzmann machines[C]//Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Guadalajara, Mexico, 2012: 14-36.
[5] BREULEUX O, BENGIO Y, VINCENT P. Quickly generating representative samples from an RBM-derived process[J]. Neural computation, 2011, 23(8): 2053-2073.
[6] COURVILLE A, BERGSTRA J, BENGIO Y. Unsupervised models of images by spike-and-slab RBMs[C]//Proc Int’l Conf Machine Learning. Bellevue, Washington, USA, 2011: 1145-1152.
[7] SCHMAH T, HINTON G E, ZEMEL R, et al. Generative versus discriminative training of RBMs for classification of fMRI images[C]//Proc Neural Information and Processing Systems. Vancouver, Canada, 2008: 1409-1416.
[8] ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. Machine learning research, 2010, 11: 625-660.
[9] VINCENT P. Extracting and composing robust features with denoising auto-encoders[C]//International Conference on Machine Learning(ICML). Helsinki, Finland, 2008: 1096-1103.
[10] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Machine learning research, 2010, 11: 3371-3408.
[11] CHEN M, XU Z, WINBERGER K Q, et al. Marginalized denoising autoencoders for domain adaptation[C]//International Conference on Machine Learning. Edinburgh, Scotland, 2012: 1206-1214.
[12] VINCENT P. A connection between score matching and denoising autoencoders[J]. Neural computation, 2011, 23(7): 1661-1674.
[13] RIFAI S. Contractive auto-encoders: explicit invariance during feature extraction[C]//Proceedings of the Twenty-eight International Conference on Machine Learning. Bellevue, USA, 2011: 833-840
[14] RIFAI S, BENGIO Y, DAUPHIN Y, et al. A generative process for sampling contractive auto-encoders[C]//Proc Int’l Conf Machine Learning. Edinburgh, Scotland, UK, 2012: 1206-1214.
[15] LECUN Y. Neural networks: tricks of the trade (2nd ed.) [M]. Germany: Springer, 2012: 9-48
[16] ZEILER M D, TAYLOR G W, FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning[C]//IEEE International Conference on Computer Vision. Barcelona, Spain, 2011: 2013-2025.
相似文献/References:
[1]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[2]杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(5):808.[doi:10.11992/tis.201804051]
 YANG Wenyuan.Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J].CAAI Transactions on Intelligent Systems,2018,13():808.[doi:10.11992/tis.201804051]
[3]张潇鲲,刘琰,陈静.引入外部词向量的文本信息网络表示学习[J].智能系统学报,2019,14(5):1056.[doi:10.11992/tis.201809037]
 ZHANG Xiaokun,LIU Yan,CHEN Jing.Representation learning using network embedding based on external word vectors[J].CAAI Transactions on Intelligent Systems,2019,14():1056.[doi:10.11992/tis.201809037]
[4]王丽娟,丁世飞.一种基于ELM-AE特征表示的谱聚类算法[J].智能系统学报,2021,16(3):560.[doi:10.11992/tis.202005021]
 WANG Lijuan,DING Shifei.A spectral clustering algorithm based on ELM-AE feature representation[J].CAAI Transactions on Intelligent Systems,2021,16():560.[doi:10.11992/tis.202005021]
[5]马睿,周治平.结合地标点与自编码的快速多视图聚类网络[J].智能系统学报,2022,17(2):333.[doi:10.11992/tis.202101011]
 MA Rui,ZHOU Zhiping.Fast multiview clustering network combining landmark points and autoencoder[J].CAAI Transactions on Intelligent Systems,2022,17():333.[doi:10.11992/tis.202101011]
[6]吴晓东,熊伟丽.采用编码输入的生成对抗网络故障检测方法及应用[J].智能系统学报,2022,17(3):496.[doi:10.11992/tis.202102003]
 WU Xiaodong,XIONG Weili.Fault detection method and its application using GAN with an encoded input[J].CAAI Transactions on Intelligent Systems,2022,17():496.[doi:10.11992/tis.202102003]
[7]杨梦茵,陈俊芬,翟俊海.非对称卷积编码器的聚类算法[J].智能系统学报,2022,17(5):900.[doi:10.11992/tis.202107021]
 YANG Mengyin,CHEN Junfen,ZHAI Junhai.A clustering method based on the asymmetric convolutional autoencoder[J].CAAI Transactions on Intelligent Systems,2022,17():900.[doi:10.11992/tis.202107021]
[8]张智慧,杨燕,张熠玲.面向不完整多视图聚类的深度互信息最大化方法[J].智能系统学报,2023,18(1):12.[doi:10.11992/tis.202203051]
 ZHANG Zhihui,YANG Yan,ZHANG Yiling.Deep mutual information maximization method for incomplete multi-view clustering[J].CAAI Transactions on Intelligent Systems,2023,18():12.[doi:10.11992/tis.202203051]
[9]戚银城,耿劭锋,赵振兵,等.基于特征迁移的螺栓图像超分辨率处理方法[J].智能系统学报,2023,18(4):858.[doi:10.11992/tis.202201009]
 QI Yincheng,GENG Shaofeng,ZHAO Zhenbing,et al.A method for super resolution processing of bolt image based on feature transfer[J].CAAI Transactions on Intelligent Systems,2023,18():858.[doi:10.11992/tis.202201009]
[10]邢天祎,郭茂祖,陈加栋,等.基于空时对抗变分自编码器的人群异常行为检测[J].智能系统学报,2023,18(5):994.[doi:10.11992/tis.202303002]
 XING Tianyi,GUO Maozu,CHEN Jiadong,et al.Detection of abnormal crowd behavior based on spatial-temporal adversarial variational autoencoder[J].CAAI Transactions on Intelligent Systems,2023,18():994.[doi:10.11992/tis.202303002]

备注/Memo

收稿日期:2017-06-10;改回日期:。
基金项目:国家自然科学基金项目(61672364).
作者简介:杨梦铎,女,1989年生,讲师,博士,主要研究方向为模式识别与机器学习;栾咏红,女,1968年生,副教授,主要研究方向为强化学习;刘文军,男,1981年生,讲师,博士,主要研究方向为无线传感网络与算法分析。
通讯作者:杨梦铎.E-mail:mengduoyang@163.com.

更新日期/Last Update: 2018-01-03
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com