[1]赵冠哲,齐建鹏,于彦伟,等.移动社交网络异常签到在线检测算法[J].智能系统学报,2017,12(5):752-759.[doi:10.11992/tis.201706027]
 ZHAO Guanzhe,QI Jianpeng,YU Yanwei,et al.Online check-in outlier detection method in mobile social networks[J].CAAI Transactions on Intelligent Systems,2017,12(5):752-759.[doi:10.11992/tis.201706027]
点击复制

移动社交网络异常签到在线检测算法

参考文献/References:
[1] 於志文, 周兴社, 郭斌. 移动社交网络中的感知计算模型、平台与实践[J]. 中国计算机学会通讯,2012,8(5):15-21.
[2] WE ARE SOCIAL LTD. DIGITAL IN 2016[EB/OL].[2017-03-10].http://wearesocial.com/uk/special-reports/digital-in-2016.
[3] ZHENG Yu, XIE X. Location-based social networks:locations[J]. Computing with spatial trajectories, 2011:277-308.
[4] 萧世埨. 基于位置服务与人类活动的关系和影响[J]. 中国计算机学会通讯, 2010,6(6):30-35.
[5] 张玉清, 吕少卿, 范丹. 在线社交网络中异常帐号检测方法研究[J]. 计算机学报, 2015, 38(10):2011-2027.ZHANG Yuqing,LV Shaoqing,FAN Dan. Anomaly detection in online social networks[J]. Chinese journal of computers, 2015, 38(10):2011-2027.
[6] CHO E, MYERS S A, LESKOVEC J. Friendship and mobility:user movement in location-based social networks[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Diego, USA, 2011:1082-1090.
[7] KNORR E M, NG R T. Algorithms for mining distance-based outliers in large datasets[C]//International Conference on Very Large Data Bases. New York, USA, 1998:392-403.
[8] KNORR E M, NG R T, TUCAKOV V. Distance-based outliers:algorithms and applications[J]. Vldb journal, 2000, 8(3/4):237-253.
[9] RAMASWAMY S, RASTOGI R, SHIM K. Efficient algorithms for mining outliers from large data sets[C]//ACM SIGMOD International Conference on Management of Data. Dallas, USA, 2000:427-438.
[10] BREUNIG MARKUS M. LOF:identifying density-based local outliers[J]. ACM sigmod record, 2000, 29(2):93-104.
[11] YANG D, RUNDENSTEINER E A, Ward M O. Neighbor-based pattern detection for windows over streaming data[C]//International Conference on Extending Database Technology:Advances in Database Technology. Saint Petersburg, Russia, 2009:529-540.
[12] ANGIULLI F, FASSETTI F. Detecting distance-based outliers in streams of data[C]//Sixteenth ACM Conference on Conference on Information and Knowledge Management. Lisboa, Portugal, 2007:811-820.
[13] KONTAKI M, GOUNARIS A, PAPADOPOULOS A N, et al. Continuous monitoring of distance-based outliers over data streams[C]//IEEE, International Conference on Data Engineering. Hannover, Germany, 2011:135-146.
[14] CAO L, YANG D, WANG Q, et al. Scalable distance-based outlier detection over high-volume data streams[C]//International Conference on Data Engineering. Chicago,USA, 2014:76-87.
[15] LEE J G, HAN J, LI X. Trajectory outlier detection:a partition-and-detect framework[C]//International Confe-rence on Data Engineering. Cancun, Mexico, 2008:140-149.
[16] BU Yingyi, CHEN L, FU W C, et al. Efficient anomaly monitoring over moving object trajectory streams[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:159-168.
[17] YU Yanwei, CAO Lei, RUNDENSTEINER E A, et al. Detecting moving object outliers in massive-scale trajectory streams[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2014:422-431.
[18] LI Zhenhui, WANG J, Han J. Mining event periodicity from incomplete observations[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing, China, 2012:444-452.
相似文献/References:
[1]田国会,吉艳青,李晓磊.家庭智能空间下基于场景的人的行为理解[J].智能系统学报,2010,5(1):57.
 TIAN Guo-hui,JI Yan-qing,LI Xiao-lei.Human behaviors understanding based on scene knowledge in home intelligent space[J].CAAI Transactions on Intelligent Systems,2010,5():57.
[2]张玉玲,尹传环.依特征频率的安卓恶意软件异常检测的研究[J].智能系统学报,2018,13(2):168.[doi:10.11992/tis.201609016]
 ZHANG Yuling,YIN Chuanhuan.Android malware outlier detection based on feature frequency[J].CAAI Transactions on Intelligent Systems,2018,13():168.[doi:10.11992/tis.201609016]
[3]齐小刚,胡秋秋,刘立芳.基于MapReduce的并行异常检测算法[J].智能系统学报,2019,14(2):224.[doi:10.11992/tis.201809007]
 QI Xiaogang,HU Qiuqiu,LIU Lifang.Parallel anomaly algorithm based on MapReduce[J].CAAI Transactions on Intelligent Systems,2019,14():224.[doi:10.11992/tis.201809007]
[4]王春凯,庄福振,史忠植.易变数据流的系统资源配置方法[J].智能系统学报,2019,14(6):1278.[doi:10.11992/tis.201908011]
 WANG Chunkai,ZHUANG Fuzhen,SHI Zhongzhi.System resource allocation for variable data streams[J].CAAI Transactions on Intelligent Systems,2019,14():1278.[doi:10.11992/tis.201908011]

备注/Memo

收稿日期:2017-06-08。
基金项目:国家自然科学基金项目(61403328,61572419);山东省重点研发计划项目(2015GSF115009);山东省自然科学基金项目(ZR2014FQ016);烟台大学研究生科技创新基金项目(YDZD1712).
作者简介:赵冠哲,男,1992年生,硕士研究生,主要研究方向为数据挖掘;齐建鹏,男,1992年生,硕士研究生,主要研究方向为数据挖掘;于彦伟,男,1986年生,讲师,博士,主要研究方向为时空数据挖掘、流式数据处理、分布式计算。主持国家自然科学基金青年基金1项,参与国家自然科学基金面上项目1项,山东省重点研发计划项目1项。发表学术论文30余篇。
通讯作者:于彦伟.E-mail:yuyanwei@ytu.edu.cn

更新日期/Last Update: 2017-10-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com