[1]程旸,王士同.基于局部保留投影的多可选聚类发掘算法[J].智能系统学报,2016,11(5):600-607.[doi:10.11992/tis.201508022]
CHENG Yang,WANG Shitong.A multiple alternative clusterings mining algorithm using locality preserving projections[J].CAAI Transactions on Intelligent Systems,2016,11(5):600-607.[doi:10.11992/tis.201508022]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
11
期数:
2016年第5期
页码:
600-607
栏目:
学术论文—机器学习
出版日期:
2016-11-01
- Title:
-
A multiple alternative clusterings mining algorithm using locality preserving projections
- 作者:
-
程旸, 王士同
-
江南大学 数字媒体学院, 江苏 无锡 214122
- Author(s):
-
CHENG Yang, WANG Shitong
-
School of Digit Media, Jiangnan University, Wuxi 214122, China
-
- 关键词:
-
可供选择的聚类结果; 无监督学习; 流形学习; 多聚类; 特征分解
- Keywords:
-
alternative clustering; unsupervised learning; manifold learning; multiple clusterings; eigendecomposition
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.201508022
- 摘要:
-
绝大多数的聚类分析算法仅能得到单一的聚类结果,考虑到数据的复杂程度普遍较高,以及看待数据的视角不同,所得到的聚类结果在保证其合理性的基础上应当是不唯一的,针对此问题,提出了一个新的算法RLPP,用于发掘多种可供选择的聚类结果。RLPP的目标函数兼顾了聚类质量和相异性两大要素,采用子空间流形学习技术,通过新的子空间不断生成多种互不相同的聚类结果。RLPP同时适用于线性以及非线性的数据集。实验表明,RLPP成功地发掘了多种可供选择的聚类结果,其性能相当或优于现有的算法。
- Abstract:
-
Most clustering algorithms typically find just one single result for the data inputted. Considering that the complexity of the data is generally high, combined with the need to allow the data to be viewed from different perspectives (on the basis of ensuring reasonableness), means that clustering results are often not unique. We present a new algorithm RLPP for an alternative clustering generation method. The objective of RLPP is to find a balance between clustering quality and dissimilarity using a subspace manifold learning technique in a new subspace so that a variety of clustering results can be generated. Experimental results using both linear and nonlinear datasets show that RLPP successfully provides a variety of alternative clustering results, and is able to outperform or at least match a range of existing methods.
备注/Memo
收稿日期:2015-08-26。
基金项目:国家自然科学基金项目(61272210).
作者简介:程旸,男,1991年生,硕士研究生,主要研究方向为人工智能与模式识别、数据挖掘;王士同,男,1964年生,教授,博士生导师,中国离散数学学会常务理事,中国机器学习学会常务理事。主要研究方向为人工智能、模式识别和图像处理。发表学术论文近百篇,其中被SCI、EI检索50余篇。
通讯作者:程旸.E-mail:szhchengyang@163.com
更新日期/Last Update:
1900-01-01