[1]李晨曦,孙正兴,宋沫飞,等.一种三维模型最优视图的分类选择方法[J].智能系统学报,2014,9(1):12-18.[doi:10.3969/j.issn.1673-4785.201305004]
 LI Chenxi,SUN Zhengxing,SONG Mofei,et al.A classification-based approach for best view selection of 3D models[J].CAAI Transactions on Intelligent Systems,2014,9(1):12-18.[doi:10.3969/j.issn.1673-4785.201305004]
点击复制

一种三维模型最优视图的分类选择方法

参考文献/References:
[1] MARR D, POGGIO T, HILDRETH E C, et al. A computational theory of human stereo vision[M]. Boston: Birkh?use, 1991: 263-295.
[2] BLANZ V, TARR M J, BULTHOFF H H, et al. What object attributes determine canonical views?[J]. Perception, 1999, 28(5): 560-575.
[3] POLONSKY O, PATAN G, BIASOTTI S, et al. What’s in an image? Towards the computation of the "best" view of an object[J]. The Visual Computer, 2005, 21(8\\9\\10): 840-847.
[4] FEIXAS M, DEL ACEBO E, BEKAERT P, et al. An information theory framework for the analysis of scene complexity[J]. Computer Graphics Forum, 1999, 18(3): 95-106.
[5] 杨利明,王文成,吴恩化.基于视平面上特征计算的视点选择[J].计算机辅助设计与图形学学报, 2008, 20(9): 1097-1103.YANG Liming, WANG Wencheng, WU Enhua. Viewpoint selection by feature measurement on the viewing plane[J]. Journal of Computer-Aided Design & Computer Graphics, 2008, 20(9): 1097-1103.
[6] 曹伟国,胡平,李华,等.基于距离直方图的最优视点选择[J].计算机辅助设计与图形学学报, 2010, 22(9): 1515-1521.CAO Weiguo, HU Ping, LI Hua, et al. Canonical viewpoint selection based on distance-histogram[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(9): 1515-1521.
[7] JOSHUA P, PHILIP S, ALEKSEY G, et al. A planar-reflective symmetry transform for 3D shapes[J]. ACM Transactions on Graphics, 2006, 25(3): 549-559.
[8] YAMAUCHI H, SALEEM W, YOSHIZAWA S, et al. Towards stable and salient multi-view representation of 3D shapes[C]//Proceedings of the IEEE International Conference on Shape Modeling and Applications. Matsushima, Japan, 2006: 40.
[9] VáZQUEZ P P, FEIXAS M, SBERT M, et al. Automatic view selection using viewpoint entropy and its application to image-based modeling[J]. Computer Graphics Forum, 2003, 22(4): 689-700.
[10] SHILANE P, FUNKHOUSER T. Distinctive regions of 3D surfaces[J]. ACM Transactions on Graphics, 2007, 26(2): 7.
[11] VáZQUEZ P P. Automatic view selection through depth-based view stability analysis[J]. The Visual Computer, 2009, 25(5\\6\\7): 441-449.
[12] LAGA H. Data-driven approach for automatic orientation of 3D shapes[J]. The Visual Computer, 2011, 27(11): 977-989.
[13] FU H, COHEN-OR D, DROR G, et al. Upright orientation of man-made objects[J]. ACM Transactions on Graphics, 2008, 27(3): 1-7.
[14] VRANIC D V, SAUPE D. 3D model retrieval[C]//Proceedings of the Spring Conference on Computer Graphics and its Applications. Budmerice, Slovakia, 2000: 89-93.
[15] ZHANG D, LU G. An integrated approach to shape based image retrieval[C]//Proceedings of 5th Asian Conference on Computer Vision. Melbourne, Australia, 2002: 652-657.
[16] KAUPPIEN H, SEPANEN T. An experiment comparison of auto regressive and Fourier based descriptors in 2D shape classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2): 201-207.
[17] ZHANG D, LU G. Shape retrieval using Fourier descriptors[C]//Proceedings of 2nd IEEE Pacific Rim Conference on Multimedia. Beijing, China, 2001: 1-9.
[18] CHEN D Y, TIAN X P, SHEN Y T, et al. On visual similarity based 3D model retrieval[J]. Computer Graphics Forum, 2003, 22(3): 223-232.
[19] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32.
[20] BOSCH A, ZISSERMAN A, MUNOZ X. Image classification using random forests and ferns[C]//Proceedings of 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007: 1-8.
[21] SHILANE P, MIN P, KAZHDAN M, et al. The Princeton shape benchmark[C]//Proceedings of the IEEE Shape Modeling International. Washington, DC, USA, 2004: 167-178.
相似文献/References:
[1]郑存芳,洪文学,李少雄,等.数据偏序结构关系中的知识发现可视化方法[J].智能系统学报,2016,11(4):475.[doi:10.11992/tis.201606019]
 ZHENG Cunfang,HONG Wenxue,LI Shaoxiong,et al.A novel knowledge discovery visualization method based on data partial ordered structure[J].CAAI Transactions on Intelligent Systems,2016,11():475.[doi:10.11992/tis.201606019]
[2]邓廷权,王强.半监督类保持局部线性嵌入方法[J].智能系统学报,2021,16(1):98.[doi:10.11992/tis.202003007]
 DENG Tingquan,WANG Qiang.Semi-supervised class preserving locally linear embedding[J].CAAI Transactions on Intelligent Systems,2021,16():98.[doi:10.11992/tis.202003007]

备注/Memo

收稿日期:2013-05-03。
基金项目:国家"863"计划资助项目(2007AA01Z334);国家自然科学基金资助项目(61272219,61100110,61021062);江苏省科技计划资助项目(BE2010072,BE2011058,BY2012190).
作者简介:李晨曦,男,1991年生,硕士研究生,主要研究方向为计算机图形学;宋沫飞,男,1986年生,博士研究生,主要研究方向为计算机图形学。
通讯作者:孙正兴,男,1964年生,教授、博士生导师、博士,中国计算机学会计算机辅助设计与图形学专委会委员,中国人工智能学会首届人工心理与人工情感专委会委员。主要研究方向为多媒体计算、计算机视觉与智能人机交互。先后主持和参与国家自然科学基金、国家"863"计划项目、企事业横向合作课题等项目多项,获省部级科技进步三等奖3次。发表学术论文近百篇,出版书籍5部.E-mail:szx@nju.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com