[1]孟祥福,崔江燕,邓敏超.基于图卷积神经网络的最短路径距离估计方法[J].智能系统学报,2024,19(6):1518-1527.[doi:10.11992/tis.202309006]
 MENG Xiangfu,CUI Jiangyan,DENG Minchao.Road network shortest distance estimation method based on graph convolutional networks[J].CAAI Transactions on Intelligent Systems,2024,19(6):1518-1527.[doi:10.11992/tis.202309006]
点击复制

基于图卷积神经网络的最短路径距离估计方法

参考文献/References:
[1] DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische mathematik, 1959, 1(1): 269-271.
[2] FLOYD R W. Algorithm 97: Shortest path[J]. ACM, 1962, 5(6): 345.
[3] GEISBERGER R, SANDERS P, SCHULTES D, et al. Contraction hierarchies: faster and simpler hierarchical routing in road networks[C]//International Workshop on Experimental and Efficient Algorithms. Berlin: Springer, 2008: 319-333.
[4] OUYANG Dian, QIN Lu, CHANG Lijun, et al. When hierarchy meets 2-hop-labeling: efficient shortest distance queries on road networks[C]//Proceedings of the 2018 International Conference on Management of Data. New York: ACM, 2018: 709-724.
[5] GEISBERGER R, SCHIEFERDECKER D. Heuristic contraction hierarchies with approximation guarantee[C]// Proceedings of the Third Annual Symposium on Combinatorial Search. Menlo Park: AAAI, 2010: 31-38.
[6] CHECHIK S. Approximate distance oracles with improved bounds[C]//Proceedings of the forty-seventh annual ACM on symposium on Theory of Computing. Portland: ACM, 2015: 1-10.
[7] TANG Liying, CROVELLA M. Virtual landmarks for the internet[C]//Proceedings of the 2003 ACM SIGCOMM Internet Measurement Conference. Miami Beach: ACM, 2003: 143-152.
[8] ZHAO Xiaohan, ZHENG Haitao. Orion: shortest path estimation for large social graphs[C]//3rd Workshop on Online Social Networks. Boston: USENIX, 2010: 9.
[9] ZHAO Xiaohan, SALA A, ZHENG Haitao, et al. Efficient shortest paths on massive social graphs[C]//Proceedings of the 7th International Conference on Collaborative Computing: Networking, Applications and Worksharing. Orlando: IEEE, 2011: 77-86.
[10] GUBICHEV A, BEDATHUR S, SEUFERT S, et al. Fast and accurate estimation of shortest paths in large graphs[C]//Proceedings of the 19th ACM international conference on Information and knowledge management. Toronto: ACM, 2010: 499-508.
[11] QI J, WANG W, ZHANG R, et al. A learning based approach to predict shortest-path distances[C]//Proceedings of the 23rd International Conference on Extending Database Technology. Copenhagen: OpenProceedings, 2020: 367-370.
[12] RIZI F S, SCHLOETTERER J, GRANITZER M. Shortest path distance approximation using deep learning techniques[C]//2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Barcelona: IEEE, 2018: 1007-1014.
[13] HUANG Shuai, WANG Yong, ZHAO Tianyu, et al. A learning-based method for computing shortest path distances on road networks[C]//2021 IEEE 37th International Conference on Data Engineering. Chania: IEEE, 2021: 360-371.
[14] CHEN Xu, WANG Shaohua, LI Huilai, et al. Ndist2vec: node with landmark and new distance to vector method for predicting shortest path distance along road networks[J]. ISPRS international journal of geo-information, 2022, 11(10): 514.
[15] DARMOCHWAL A. The euclidean space[J]. Formalized mathematics, 1991, 2(4): 599-603.
[16] KLEINBERG R. Geographic routing using hyperbolic space[C]//IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communications. Anchorage: IEEE, 2007: 1902-1909.
[17] ANIRBAN S, WANG Junhu, ISLAM M S. Experimental evaluation of indexing techniques for shortest distance queries on road networks[C]//2023 IEEE 39th International Conference on Data Engineering. Anaheim: IEEE, 2023: 624-636.
[18] PACINI F, GUNBY-MANN A, COHEN S, et al. ANEDA: adaptable node embeddings for shortest path distance approximation[C]//2023 IEEE High Performance Extreme Computing Conference. Boston: IEEE, 2023: 1-7.
[19] LUO Jiaqi, DAI Baisheng, CHANG Penghao, et al. Determination of rice leaf midrib deflection in field environment by using semantic segmentation and shortest distance algorithm[J]. Computers and electronics in agriculture, 2023, 215: 108326.
[20] LEI Yi, SHAO Hu, WU Ting, et al. An accelerating algorithm for maximum shortest path interdiction problem by upgrading edges on trees under unit Hamming distance[J]. Optimization letters, 2023, 17(2): 453-469.
[21] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. France: ICLR, 2017: 1-14.
[22] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[EB/OL]. (2016-07-03)[2021-01-01]. https://arxiv.org/abs/1607.00653.
[23] NICKEL M, KIELA D. Poincaré embeddings for learning hierarchical representations[C]//Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017. New York: Curran Associates, 2017: 6338-6347.
[24] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the International Conference on Learning Representations. Vancouver: ICLR, 2018: 566-577.
[25] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]// Proceedings of the 34th International Conference on Machine Learning. New York: PMLR, 2017: 1263-1272.
[26] ZHOU Jie, CUI Ganqu, HU Shengding, et al. Graph neural networks: a review of methods and applications[J]. AI open, 2020, 1: 57-81.
[27] WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE transactions on neural networks and learning systems, 2021, 32(1): 4-24.
[28] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017. New York: Curran Associates, 2017: 1024-1034.
[29] KARYPIS G, KUMAR V. Analysis of multilevel graph partitioning[C]//Proceedings of the 1995 ACM/IEEE conference on Supercomputing. San Diego: ACM, 1995: 29.
[30] 闫群民, 马瑞卿, 马永翔, 等. 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48(4): 120-127.
YAN Qunmin, MA Ruiqing, MA Yongxiang, et al. Adaptive simulated annealing particle swarm optimization algorithm[J]. Journal of Xidian University, 2021, 48(4): 120-127.
[31] 孟祥福, 赖贞祥, 崔江燕. 集合空间关键字内聚组查询方法[J]. 智能系统学报, 2024, 19(3): 707-718.
MENG Xiangfu, LAI Zhenxiang, CUI Jiangyan. Cohesive group query approach for collective spatial keywords[J]. CAAI transactions on intelligent systems, 2024, 19(3): 707-718.
相似文献/References:
[1]吴国栋,查志康,涂立静,等.图神经网络推荐研究进展[J].智能系统学报,2020,15(1):14.[doi:10.11992/tis.201908034]
 WU Guodong,ZHA Zhikang,TU Lijing,et al.Research advances in graph neural network recommendation[J].CAAI Transactions on Intelligent Systems,2020,15():14.[doi:10.11992/tis.201908034]
[2]张勇,高大林,巩敦卫,等.用于关系抽取的注意力图长短时记忆神经网络[J].智能系统学报,2021,16(3):518.[doi:10.11992/tis.202008036]
 ZHANG Yong,GAO Dalin,GONG Dunwei,et al.Attention graph long short-term memory neural network for relation extraction[J].CAAI Transactions on Intelligent Systems,2021,16():518.[doi:10.11992/tis.202008036]
[3]周俊,张志强,曹月恬,等.地理位置和时间感知的表示学习框架[J].智能系统学报,2021,16(5):909.[doi:10.11992/tis.202104011]
 ZHOU Jun,ZHANG Zhiqiang,CAO Yuetian,et al.A geography and time aware representation learning framework[J].CAAI Transactions on Intelligent Systems,2021,16():909.[doi:10.11992/tis.202104011]
[4]卢毅,陈亚冉,赵冬斌,等.关键点图对比图像分类方法[J].智能系统学报,2023,18(1):36.[doi:10.11992/tis.202112001]
 LU Yi,CHEN Yaran,ZHAO Dongbin,et al.Keypoint-based graph contrastive neural network for image classification[J].CAAI Transactions on Intelligent Systems,2023,18():36.[doi:10.11992/tis.202112001]
[5]车飞虎,张大伟,邵朋朋,等.基于四元数门控图神经网络的脚本事件预测[J].智能系统学报,2023,18(1):138.[doi:10.11992/tis.202203042]
 CHE Feihu,ZHANG Dawei,SHAO Pengpeng,et al.Script event prediction based on a quaternion-gated graph neural network[J].CAAI Transactions on Intelligent Systems,2023,18():138.[doi:10.11992/tis.202203042]
[6]孟祥福,温晶,李子函,等.多重注意力指导下的异构图嵌入方法[J].智能系统学报,2023,18(4):688.[doi:10.11992/tis.202204006]
 MENG Xiangfu,WEN Jing,LI Zihan,et al.Heterogeneous graph embedding method guided by the multi-attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18():688.[doi:10.11992/tis.202204006]
[7]周贤琛,马扬,程光权,等.战场目标实体类型识别的鲁棒图神经网络方法[J].智能系统学报,2023,18(6):1156.[doi:10.11992/tis.202111025]
 ZHOU Xianchen,MA Yang,CHENG Guangquan,et al.Robust graph neural network method for target entity type recognition in a battlefield environment[J].CAAI Transactions on Intelligent Systems,2023,18():1156.[doi:10.11992/tis.202111025]
[8]曹汉童,陈璟.融合Doc2vec与GCN的多类型蛋白质相互作用预测方法[J].智能系统学报,2023,18(6):1165.[doi:10.11992/tis.202212029]
 CAO Hantong,CHEN Jing.Prediction of multitype protein interactions combining Doc2vec and GCN[J].CAAI Transactions on Intelligent Systems,2023,18():1165.[doi:10.11992/tis.202212029]
[9]刘晓光,李梅.基于深度学习的药物-靶标相互作用预测研究综述[J].智能系统学报,2024,19(3):494.[doi:10.11992/tis.202308024]
 LIU Xiaoguang,LI Mei.A survey of deep learning-based drug-target interaction prediction[J].CAAI Transactions on Intelligent Systems,2024,19():494.[doi:10.11992/tis.202308024]
[10]王闪闪,巩长庆,秦华锋,等.基于深度学习的K近邻图迭代静脉识别算法研究[J].智能系统学报,2024,19(5):1149.[doi:10.11992/tis.202307009]
 WANG Shanshan,GONG Changqing,QIN Huafeng,et al.Vein recognition algorithm combining K-nearest neighbor and graph iterative based on deep learning[J].CAAI Transactions on Intelligent Systems,2024,19():1149.[doi:10.11992/tis.202307009]

备注/Memo

收稿日期:2023-9-2。
作者简介:孟祥福,教授,博士生导师,主要研究方向为top-k查询、时空大数据。主持国家自然科学基金项目2项、辽宁省各类基金项目4项,发表学术论文20余篇,出版学术专著2部。E-mail: marxi@126.com;崔江燕,硕士研究生,主要研究方向为图嵌入、最短路径距离计算。E-mail: 1315249764@qq.com;邓敏超,硕士研究生,主要研究方向为异构图嵌入、社交网络分析。E-mail: 1093523593@qq.com。
通讯作者:孟祥福. E-mail: marxi@126.com

更新日期/Last Update: 2024-11-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com