[1]孟祥福,崔江燕,邓敏超.基于图卷积神经网络的最短路径距离估计方法[J].智能系统学报,2024,19(6):1518-1527.[doi:10.11992/tis.202309006]
MENG Xiangfu,CUI Jiangyan,DENG Minchao.Road network shortest distance estimation method based on graph convolutional networks[J].CAAI Transactions on Intelligent Systems,2024,19(6):1518-1527.[doi:10.11992/tis.202309006]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第6期
页码:
1518-1527
栏目:
学术论文—人工智能基础
出版日期:
2024-12-05
- Title:
-
Road network shortest distance estimation method based on graph convolutional networks
- 作者:
-
孟祥福, 崔江燕, 邓敏超
-
辽宁工程技术大学 电子与信息工程学院, 辽宁 葫芦岛 125105
- Author(s):
-
MENG Xiangfu, CUI Jiangyan, DENG Minchao
-
School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China
-
- 关键词:
-
最短路径距离计算; 图神经网络; 数据采样; 表示学习; 图卷积网络; 图分区; 深度学习; 拓扑结构
- Keywords:
-
shortest path distance computation; graph neural networks; data sampling; representation learning; graph convolutional networks; graph partitioning; deep learning; topology
- 分类号:
-
TP302.7
- DOI:
-
10.11992/tis.202309006
- 摘要:
-
路网最短路径距离估计问题的关键是提高估计准确度和减少模型训练时间。现有基于嵌入的最短路径距离估计方法要么模型的训练时间较长,要么通过牺牲估计精度来降低模型训练时间。针对以上问题,通过分析基于嵌入的最短路径距离估计方法,提出路网最短路径距离估计编码器-解码器框架,归纳和整合这类方法的核心过程,并将核心过程分为嵌入方法、采样方案和模型训练3部分。在此基础上,提出一种基于图卷积网络的路网顶点嵌入方法(road graph convolutional networks and distance2vector, RGCNdist2vec),用于捕获路网的结构信息。在模型训练样本的采样方面,设计一种基于图逻辑分区的三阶段采样方法,能够选取少量优质样本用于模型训练。为验证模型及采样方案的有效性,在4个真实路网数据集上开展实验,并与现有相关模型进行对比,结果表明所提模型具有较高的估计准确性,并且模型训练时间降低为现有基线模型的1/4。
- Abstract:
-
Improving the accuracy of estimating the shortest path distance while reducing model training time is crucial. Existing methods for embedded shortest path distance estimation often take too long to train or sacrifice accuracy to save time. To solve these problems, an encoder-decoder framework has been designed to estimate the shortest distance in a road network by analyzing existing embedded systems-based shortest-path distance estimation methods. The core process is broken down into three parts: embedding method, sampling method, and model training. A road network vertex embedding method, RGCNdist2vec, leverages road graph convolutional networks to capture the structural information of the road network. For model training, a three-stage sampling method using graph logical partitioning is designed to select a small number of high-quality samples. Experiments conducted on four real road network data sets demonstrate that the proposed model achieves higher estimation accuracy while reducing training time by nearly four times compared to existing baseline models.
更新日期/Last Update:
2024-11-05