[1]郭迎宸,隋璘,熊伟丽.基于非负绞杀的稀疏化ONLSTM及其工业软测量建模[J].智能系统学报,2025,20(6):1366-1378.[doi:10.11992/tis.202502004]
 GUO Yingchen,SUI Lin,XIONG Weili.Sparse ONLSTM and non-negative constrained industrial soft sensing modeling[J].CAAI Transactions on Intelligent Systems,2025,20(6):1366-1378.[doi:10.11992/tis.202502004]
点击复制

基于非负绞杀的稀疏化ONLSTM及其工业软测量建模

参考文献/References:
[1] DAI Wei, ZHOU Xinyu, LI Depeng, et al. Hybrid parallel stochastic configuration networks for industrial data analytics[J]. IEEE transactions on industrial informatics, 2022, 18(4): 2331-2341.
[2] YUAN Xiaofeng, WANG Yalin, YANG Chunhua, et al. Weighted linear dynamic system for feature representation and soft sensor application in nonlinear dynamic industrial processes[J]. IEEE transactions on industrial electronics, 2018, 65(2): 1508-1517.
[3] 杜康萍, 隋璘, 熊伟丽. 基于自适应稀疏宽度学习系统的软测量建模[J]. 系统仿真学报, 2025, 37(6): 1449-1461.
DU Kangping, SUI Lin, XIONG Weili. Soft sensor modeling based on adaptive sparse broad learning system[J]. Journal of system simulation, 2025, 37(6): 1449-1461.
[4] CHEN Hongtian, HUANG Biao. Fault-tolerant soft sensors for dynamic systems[J]. IEEE transactions on control systems technology, 2023, 31(6): 2805-2818.
[5] YAO Le, GE Zhiqiang. Industrial big data modeling and monitoring framework for plant-wide processes[J]. IEEE transactions on industrial informatics, 2020, 17(9): 6399-6408.
[6] YUAN Xiaofeng, OU Chen, WANG Yalin, et al. A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process[J]. IEEE transactions on neural networks and learning systems, 2019, 32(8): 3296-3305.
[7] YAN Aijun, GUO Jingcheng, WANG Dianhui. Robust stochastic configuration networks for industrial data modelling with Student’s-t mixture distribution[J]. Information sciences, 2022, 607: 493-505.
[8] GAO Yunlong, LIN Tingting, PAN Jinyan, et al. Fuzzy sparse deviation regularized robust principal component analysis[J]. IEEE transactions on image processing, 2022, 31: 5645-5660.
[9] GENG Zhiqiang, CHEN Zhiwei, MENG Qingchao, et al. Novel Transformer based on gated convolutional neural network for dynamic soft sensor modeling of industrial processes[J]. IEEE transactions on industrial informatics, 2022, 18(3): 1521-1529.
[10] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[11] YUAN Xiaofeng, LI Lin, WANG Yalin. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE transactions on industrial informatics, 2019, 16(5): 3168-3176.
[12] SUI Lin, SUN Wenxin, LIU Wentao, et al. A sparse regularized soft sensor based on GRU and self-interpretation double nonnegative garrote: from variable selection to structure optimization[J]. Control engineering practice, 2024, 153: 106074.
[13] 张凯, 王亚礼, 张晓雯, 等. 基于特征融合的粗轧出口温度建模方法与应用[J/OL]. 控制理论与应用, 2024, DOI: 10.7641/CTA.2024.40252.
ZHANG Kai, WANG Yali, ZHANG Xiaowen, et al. A feature fusion-based rough rolling exit temperature modeling method and its applications[J/OL]. Control theory & applications, 2024, DOI: 10.7641/CTA.2024.402 52.
[14] LIU Qingqiang, SHANG Zhiqing, LU Shixiang, et al. Physics-guided TL-LSTM network for early-stage degradation trajectory prediction of lithium-ion batteries[J]. Journal of energy storage, 2025, 106: 114736.
[15] HOGEA E, ONCHI? D M, YAN Ruqiang, et al. LogicLSTM: logically-driven long short-term memory model for fault diagnosis in gearboxes[J]. Journal of manufacturing systems, 2024, 77: 892-902.
[16] YAN Haoran, QIN Yi, XIANG Sheng, et al. Long-term gear life prediction based on ordered neurons LSTM neural networks[J]. Measurement, 2020, 165: 108205.
[17] SHEN Yikang, TAN Shawn, SORDONI A, et al. Ordered neurons: integrating tree structures into recurrent neural networks[C]//Proceedings of the 7th International Conference for Learning Representations. New Orleans: ICLR, 2019.
[18] 李祥宇, 隋璘, 熊伟丽. 基于自注意力机制与卷积ONLSTM网络的软测量算法[J]. 智能系统学报, 2023, 18(5): 957-965.
LI Xiangyu, SUI Lin, XIONG Weili. Soft sensor algorithm based on self-attention mechanism and convolutional ONLSTM network[J]. CAAI transactions on intelligent systems, 2023, 18(5): 957-965.
[19] XIANG Sheng, QIN Yi, ZHU Caichao, et al. LSTM networks based on attention ordered neurons for gear remaining life prediction[J]. ISA transactions, 2020, 106: 343-354.
[20] 李祥宇, 隋璘, 马君霞, 等. 基于时序迁移与双流加权的ONLSTM软测量建模[J]. 化工学报, 2023, 74(11): 4622-4633.
LI Xiangyu, SUI Lin, MA Junxia, et al. ONLSTM soft sensor modeling based on time series transfer and dual stream weighting[J]. CIESC journal, 2023, 74(11): 4622-4633.
[21] ZHANG Haoran, ZHAO Chunhui. Stable transfer learning-based control: an off-dynamics adaptive approach for unknown nonlinear systems[J]. Neurocomputing, 2025, 616: 128951.
[22] CHIPLUNKAR R, HUANG Biao. Siamese neural network-based supervised slow feature extraction for soft sensor application[J]. IEEE transactions on industrial electronics, 2020, 68(9): 8953-8962.
[23] 刘建伟, 崔立鹏, 刘泽宇, 等. 正则化稀疏模型[J]. 计算机学报, 2015, 38(7): 1307-1325.
LIU jianwei, CUI lipeng, LIU zeyu, et al. Survey on the regularized sparse models[J]. Chinese journal of computers, 2015, 38(7): 1307-1325.
[24] YUAN Ming, LIN Yi. On the non-negative garrote estimator[J]. Journal of the royal statistical society series B: statistical methodology, 2007, 69(2): 143-161.
[25] SUN Kai, LIU Jialin, KANG Jialin, et al. Development of a variable selection method for soft sensor using artificial neural network and nonnegative garrote[J]. Journal of process control, 2014, 24(7): 1068-1075.
[26] WANG Jianguo, JANG Shishang, WONG D S H, et al. Soft-sensor development with adaptive variable selection using nonnegative garrote[J]. Control engineering practice, 2013, 21(9): 1157-1164.
[27] 隋璘, 马君霞, 熊伟丽. 基于注意力绞杀的门控循环单元网络及其工业软测量应用[J/OL]. 控制理论与应用, 2024, DOI: 10.7641/CTA.2024.305 65.
SUI Lin, MA Junxia, XIONG Weili. Gated recurrent unit network based on attention garrote and its application for industrial soft sensors[J/OL]. Control theory & applications, 2024, DOI: 10.7641/CTA.2024.305 65.
[28] SUI Lin, SUN Kai, MA Junxia, et al. Input variable selection and structure optimization for LSTM-based soft sensor with a dual nonnegative garrote approach[J]. IEEE transactions on instrumentation and measurement, 2023, 72: 1-11.
[29] KINGMA D P, BA J . Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference for Learning Representations. San Diego: ICLR, 2015.
[30] FRIEDMAN J H. Multivariate adaptive regression splines[J]. The annals of statistics, 1991, 19(1): 1-67.
[31] YUAN Xiaofeng, LI Lin, SHARDT Y A W, et al. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development[J]. IEEE transactions on industrial electronics, 2020, 68(5): 4404-4414.
[32] SUN Kai, WU Xiuliang, XUE Jingyu, et al. Development of a new multi-layer perceptron based soft sensor for SO2 emissions in power plant[J]. Journal of process control, 2019, 84: 182-191.
[33] 周祖飞, 金新荣. 影响湿法烟气脱硫效率的因素分析[J]. 浙江电力, 2001, 20(3): 42-45.
ZHOU Zufei, JIN Xinrong. Analysis of factors affecting the efficiency of wet flue gas desulfurization[J]. Zhejiang electric power, 2001, 20(3): 42-45.
[34] 钟毅, 高翔, 骆仲泱等. 湿法烟气脱硫系统脱硫效率的影响因素[J]. 浙江大学学报: 工学版, 2008, 42(5): 890-894.
ZHONG Yi, GAO Xiang, LUO Zhongyang, et al. Factors influencing desulfurization efficiency of wet flue gas desulfurization system[J]. Journal of Zhejiang University(engineering science), 2008, 42(5): 890-894.
相似文献/References:
[1]颜学峰.优化岭参数的非线性岭回归及4-CBA含量软测量[J].智能系统学报,2006,1(1):74.
 YAN Xue-feng.Modified nonlinear ridge regression with optimal ridge pa rameter and its application to 4-CBA soft sensor[J].CAAI Transactions on Intelligent Systems,2006,1():74.
[2]向峥嵘,陈庆伟.基于小波和LSSVM的软测量建模方法[J].智能系统学报,2010,5(1):63.
 XIANG Zheng-rong,CHEN Qing-wei.An approach to soft sensor modeling based onwavelets and a least square support vector machine[J].CAAI Transactions on Intelligent Systems,2010,5():63.
[3]嵇小辅,张翔.基于FCM与集成高斯过程回归的赖氨酸发酵软测量[J].智能系统学报,2015,10(1):156.[doi:10.3969/j.issn.1673-4785.201310070]
 JI Xiaofu,ZHANG Xiang.Soft measurement of lysine fermentation based on FCM and integrated Gaussian process regression[J].CAAI Transactions on Intelligent Systems,2015,10():156.[doi:10.3969/j.issn.1673-4785.201310070]
[4]王竣禾,姜勇.基于深度强化学习的动态装配算法[J].智能系统学报,2023,18(1):2.[doi:10.11992/tis.202201006]
 WANG Junhe,JIANG Yong.Dynamic assembly algorithm based on deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2023,18():2.[doi:10.11992/tis.202201006]
[5]翟学明,郭嘉,翟羽佳.SPNCC与一维双通道CNN-LSTM相结合的变压器局部放电故障音频检测[J].智能系统学报,2023,18(3):534.[doi:10.11992/tis.202110036]
 ZHAI Xueming,GUO Jia,ZHAI Yujia.Audio detection of transformer partial discharge fault based on SPNCC and one-dimensional dual-channel CNN-LSTM[J].CAAI Transactions on Intelligent Systems,2023,18():534.[doi:10.11992/tis.202110036]
[6]李祥宇,隋璘,熊伟丽.基于自注意力机制与卷积ONLSTM网络的软测量算法[J].智能系统学报,2023,18(5):957.[doi:10.11992/tis.202211037]
 LI Xiangyu,SUI Lin,XIONG Weili.Soft sensor algorithm based on self-attention mechanism and convolutional ONLSTM network[J].CAAI Transactions on Intelligent Systems,2023,18():957.[doi:10.11992/tis.202211037]
[7]牟建鹏,刘文韬,熊伟丽.基于双向生成对抗网络的工业过程故障检测[J].智能系统学报,2024,19(5):1199.[doi:10.11992/tis.202306011]
 MOU Jianpeng,LIU Wentao,XIONG Weili.Industrial process fault detection based on bidirectional generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2024,19():1199.[doi:10.11992/tis.202306011]
[8]张铭泉,王宝兴.基于ECA-TCN的数据中心磁盘故障预测[J].智能系统学报,2025,20(2):389.[doi:10.11992/tis.202310043]
 ZHANG Mingquan,WANG Baoxing.Disk failure prediction in data centers based on ECA-TCN[J].CAAI Transactions on Intelligent Systems,2025,20():389.[doi:10.11992/tis.202310043]

备注/Memo

收稿日期:2025-2-18。
基金项目:国家自然科学基金项目(61773182);江南大学“轻工技术与工程”双一流学科与支撑学科协同发展支持计划(QGJC20230203).
作者简介:郭迎宸,硕士研究生,主要研究方向为机器学习、软测量建模。E-mail:guoyingchen25@163.com。;隋璘,博士研究生, 主要研究方向为机器学习、软测量建模。E-mail:suilin359@163.com。;熊伟丽,教授,博士生导师,主要研究方向为智能软测量技术、过程监测。主持国家自然科学基金面上项目、国家自然科学基金青年项目、江苏省产学研等省部级以上项目15项;获得江苏省科学技术奖二等奖1项;发表学术论文近百篇,获发明专利授权26项,其中国际专利3项。E-mail:greenpre@163.com。
通讯作者:熊伟丽. E-mail:greenpre@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com