[1]张铭泉,王宝兴.基于ECA-TCN的数据中心磁盘故障预测[J].智能系统学报,2025,20(2):389-399.[doi:10.11992/tis.202310043]
 ZHANG Mingquan,WANG Baoxing.Disk failure prediction in data centers based on ECA-TCN[J].CAAI Transactions on Intelligent Systems,2025,20(2):389-399.[doi:10.11992/tis.202310043]
点击复制

基于ECA-TCN的数据中心磁盘故障预测

参考文献/References:
[1] RINCóN C C A, P?RIS J F, VILALTA R, et al. Disk failure prediction in heterogeneous environments[C]//2017 International Symposium on Performance Evaluation of Computer and Telecommunication Systems. Seattle: IEEE, 2017: 1-7.
[2] CHAVES I C, DE PAULA M R P, LEITE L G M, et al. BaNHFaP: a Bayesian network based failure prediction approach for hard disk drives[C]//2016 5th Brazilian Conference on Intelligent Systems. Recife: IEEE, 2016: 427-432.
[3] HAMERLY G, ELKAN C. Bayesian approaches to failure prediction for disk drives[C]//Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 2001: 202-209.
[4] ZHANG Mingyu, GE Wenqiang, TANG Ruichun, et al. Hard disk failure prediction based on blending ensemble learning[J]. Applied sciences, 2023, 13(5): 3288.
[5] FULP E W, FINK G A, HAACK J. Predicting computer system failures using support vector machines[C]//Proceedings of the First USENIX conference on Analysis of system logs. USA: USENIX Association, 2008: 5.
[6] LI Jing, JI Xinpu, JIA Yuhan, et al. Hard drive failure prediction using classification and regression trees[C]//2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. Atlanta: IEEE, 2014: 383-394.
[7] LI Jing, STONES R J, WANG Gang, et al. Hard drive failure prediction using decision trees[J]. Reliability engineering & system safety, 2017, 164: 55-65.
[8] SHEN Jing, WAN Jian, LIM S J, et al. Random-forest-based failure prediction for hard disk drives[J]. International journal of distributed sensor networks, 2018, 14(11): 155014771880648.
[9] 李国, 常甜甜, 李静. 基于变权重随机森林的硬盘故障预测方法[J]. 计算机工程与设计, 2021, 42(10): 2988-2994.
LI Guo, CHANG Tiantian, LI Jing. Hard disk failure prediction method based on variable weight random forest[J]. Computer engineering and design, 2021, 42(10): 2988-2994.
[10] 乔旭坤, 李顺, 李君, 等. 基于机器学习的硬盘故障预测研究[J]. 计算机技术与发展, 2022, 32(6): 215-220.
QIAO Xukun, LI Shun, LI Jun, et al. Research on hard disk failure prediction based on machine learning[J]. Computer technology and development, 2022, 32(6): 215-220.
[11] 李新鹏, 高欣, 何杨, 等. 不平衡数据集下基于自适应加权Bagging-GBDT算法的磁盘故障预测模型[J]. 微电子学与计算机, 2020, 37(3): 14-19.
LI Xinpeng, GAO Xin, HE Yang, et al. Prediction model of disk failure based on adaptive weighted Bagging-GBDT algorithm under imbalanced dataset[J]. Microelectronics & computer, 2020, 37(3): 14-19.
[12] SHI Junjie, DU Jing, REN Yingwen, et al. Convolution-LSTM-based mechanical hard disk failure prediction by sensoring S. M. A. R. T. indicators[J]. Journal of sensors, 2022(5): 7832117.
[13] SHEN Jing, REN Yongjian, WAN Jian, et al. Hard disk drive failure prediction for mobile edge computing based on an LSTM recurrent neural network[J]. Mobile information systems, 2021(2): 8878364.
[14] YANG Hongzhang, LI Zongzhao, QIANG Huiyuan, et al. ZTE-predictor: disk failure prediction system based on LSTM[C]//2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume. Valencia: IEEE, 2020: 17-20.
[15] 兰云龙. 基于深度学习的磁盘健康度评估与故障预测技术研究[D]. 杭州: 杭州电子科技大学, 2017.
LAN Yunlong. Research on disk health evaluation and fault prediction technology based on deep learning[D]. Hangzhou: Hangzhou Dianzi University, 2017.
[16] 姜少彬, 杜春, 陈浩, 等. 一种硬盘故障预测的非监督对抗学习方法[J]. 西安电子科技大学学报, 2020, 47(2): 118-125.
JIANG Shaobin, DU Chun, CHEN Hao, et al. Unsupervised adversarial learning method for hard disk failure prediction[J]. Journal of Xidian University, 2020, 47(2): 118-125.
[17] HU Lihan, HAN Lixin, XU Zhenyuan, et al. A disk failure prediction method based on LSTM network due to its individual specificity[J]. Procedia computer science, 2020, 176: 791-799.
[18] WU Jian, YU Haiyang, YANG Zhen, et al. Disk failure prediction with multiple channel convolutional neural network[C]//2021 International Joint Conference on Neural Networks. Shenzhen: IEEE, 2021: 1-8.
[19] XU Chang, WANG Gang, LIU Xiaoguang, et al. Health status assessment and failure prediction for hard drives with recurrent neural networks[J]. IEEE transactions on computers, 2016, 65(11): 3502-3508.
[20] HAI Qinda, ZHANG Shuangwang, LIU Chang, et al. Hard disk drive failure prediction based on GRU neural network[C]//2022 IEEE/CIC International Conference on Communications in China. Sanshui: IEEE, 2022: 696-701.
[21] XU Shicheng, XU Xiaolong. ConvTrans-TPS: a convolutional transformer model for disk failure prediction in large-scale network storage systems[C]//2023 26th International Conference on Computer Supported Cooperative Work in Design. Rio de Janeiro: IEEE, 2023: 1318-1323.
[22] SUN Xiaoyi, CHAKRABARTY K, HUANG Ruirui, et al. System-level hardware failure prediction using deep learning[C]//2019 56th ACM/IEEE Design Automation Conference. Las Vegas: IEEE, 2019: 1-6.
[23] GUAN Yunchuan, LIU Yu, ZHOU Ke, et al. A disk failure prediction model for multiple issues[J]. Frontiers of information technology & electronic engineering, 2023, 24(7): 964-980.
[24] XIAO Jiang, XIONG Zhuang, WU Song, et al. Disk failure prediction in data centers via online learning[C]//Proceedings of the 47th International Conference on Parallel Processing. Eugene: ACM, 2018: 1-10.
[25] ZHANG Ji, ZHOU Ke, HUANG Ping, et al. Transfer learning based failure prediction for minority disks in large data centers of heterogeneous disk systems[C]//Proceedings of the 48th International Conference on Parallel Processing. Kyoto: ACM, 2019: 1-10.
[26] HAN Shujie, LEE P P C, SHEN Zhirong, et al. StreamDFP: a general stream mining framework for adaptive disk failure prediction[J]. IEEE transactions on computers, 2023, 72(2): 520-534.
[27] 关东海, 赵瑞, 袁伟伟, 等. 一种基于迁移学习和主动学习的硬盘故障预测方法及系统[P]. 中国: CN111949459A, 2020.
Guan Donghai, ZHAO Rui, YUAN Weiwei, et al. A hard disk failure prediction method and system based on transfer learning and active learning[P]. China: CN111949459A, 2020.
[28] LU Sidi, LUO Bing, Patel T, et al. Making disk failure predictions SMARTer![C]//Proceedings of the 18th USENIX Conference on File and Storage Technologies. Santa Clara: USENIX Association, 2020: 151-167.
[29] HAN Shujie, LEE P, XU Fan, et al. An in-depth study of correlated failures in production SSD-based data centers[C]//19th USENIX Conference on File and Storage Technologies. Olivia: USENIX Association, 2021: 417-429.
[30] WANG Wang, TANG Xuehai, ZHOU Biyu, et al. Improving disk failure detection accuracy via data augmentation[C]//2022 IEEE/ACM 30th International Symposium on Quality of Service. Oslo: IEEE, 2022: 1-10.
[31] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
[32] 李倩玉, 王蓓, 金晶, 等. 基于双向LSTM卷积网络与注意力机制的自动睡眠分期模型[J]. 智能系统学报, 2022, 17(3): 523-530.
LI Qianyu, WANG Bei, JIN Jing, et al. Automatic sleep staging model based on the bi-directional LSTM convolutional network and attention mechanism[J]. CAAI transactions on intelligent systems, 2022, 17(3): 523-530.
相似文献/References:
[1]王竣禾,姜勇.基于深度强化学习的动态装配算法[J].智能系统学报,2023,18(1):2.[doi:10.11992/tis.202201006]
 WANG Junhe,JIANG Yong.Dynamic assembly algorithm based on deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2023,18():2.[doi:10.11992/tis.202201006]
[2]翟学明,郭嘉,翟羽佳.SPNCC与一维双通道CNN-LSTM相结合的变压器局部放电故障音频检测[J].智能系统学报,2023,18(3):534.[doi:10.11992/tis.202110036]
 ZHAI Xueming,GUO Jia,ZHAI Yujia.Audio detection of transformer partial discharge fault based on SPNCC and one-dimensional dual-channel CNN-LSTM[J].CAAI Transactions on Intelligent Systems,2023,18():534.[doi:10.11992/tis.202110036]
[3]牟建鹏,刘文韬,熊伟丽.基于双向生成对抗网络的工业过程故障检测[J].智能系统学报,2024,19(5):1199.[doi:10.11992/tis.202306011]
 MOU Jianpeng,LIU Wentao,XIONG Weili.Industrial process fault detection based on bidirectional generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2024,19():1199.[doi:10.11992/tis.202306011]

备注/Memo

收稿日期:2023-10-31。
基金项目:中央高校基本科研业务费专项项目(2020MS122).
作者简介:张铭泉,副教授,博士,主要研究方向为机器学习、计算机体系结构、区块链技术,发表学术论文20余篇。E-mail:mqzhang@ncepu.edu.cn;王宝兴,硕士研究生,主要研究方向为深度学习和故障检测。E-mail:lifebaoxing@foxmail.com。
通讯作者:张铭泉. E-mail:mqzhang@ncepu.edu.cn

更新日期/Last Update: 2025-03-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com