[1]苗春玲,张红云,吴卓嘉,等.多粒度遮挡特征增强的行人搜索算法[J].智能系统学报,2025,20(1):230-242.[doi:10.11992/tis.202407031]
MIAO Chunling,ZHANG Hongyun,WU Zhuojia,et al.Multi-granularity occlusion feature enhancement algorithm for person search[J].CAAI Transactions on Intelligent Systems,2025,20(1):230-242.[doi:10.11992/tis.202407031]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第1期
页码:
230-242
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2025-01-05
- Title:
-
Multi-granularity occlusion feature enhancement algorithm for person search
- 作者:
-
苗春玲1,2, 张红云1,2, 吴卓嘉1,2, 张齐贤1,2, 苗夺谦1,2
-
1. 同济大学 电子与信息工程学院, 上海 201804;
2. 同济大学 嵌入式系统与服务计算教育部重点实验室, 上海 201804
- Author(s):
-
MIAO Chunling1,2, ZHANG Hongyun1,2, WU Zhuojia1,2, ZHANG Qixian1,2, MIAO Duoqian1,2
-
1. College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China;
2. Key Laboratory of Embedded System and Service Computing Ministry of Education, Tongji University, Shanghai 201804, China
-
- 关键词:
-
深度学习; 计算机视觉; 行人搜索; 目标检测; 粒计算; 数据处理; 特征提取; 生成对抗网络; 对齐
- Keywords:
-
deep learning; computer vision; person search; object detection; granular computing; data processing; feature extraction; generative adversarial networks; alignment
- 分类号:
-
TP389.1
- DOI:
-
10.11992/tis.202407031
- 摘要:
-
现有行人搜索方法着重于从有限的标注场景图中学习有效的行人表征,虽然这些方法取得了一定的效果,但学习更具有身份辨别力的行人表征通常依赖于大规模的标注数据,而获取大规模的标注数据是一个资源、劳动密集型的过程。为此,该文提出了一种场景图多粒度遮挡特征增强算法,对原始场景图进行多粒度随机遮挡,扩充训练数据,并从遮挡后的场景图中生成具有多样化信息的虚拟特征,最后利用生成的虚拟特征增强真实特征中的行人表征。进一步,基于生成对抗学习,该文设计了多粒度特征对齐模块,用于对齐遮挡图像特征和原始图像特征,保持两者语义一致性。实验结果表明,在CUHK-SYSU和PRW数据集上,该算法能够显著提升行人搜索任务的搜索精度。
- Abstract:
-
Existing person search methods focus on efficiently learning pedestrian representations from limited labeled scene images. Although these methods have achieved good results, learning more identity-discriminative pedestrian representations usually relies on large-scale labeled images, while obtaining large-scale labeled data is a resource and labor intensive process. Therefore, we propose a novel multi-granularity occlusion feature enhancement algorithm for person search, which first performs multi-granularity random occlusion on original scene images to expand the training data, and then generates virtual features with diverse information from the occluded scene images. Finally, the generated virtual features are used to enhance the pedestrian representation in the real features. Furthermore, based on generative adversarial learning, a multi-granularity feature alignment module is designed to align the occluded image features and the original image features, and thereby maintain their semantic consistency. Experiments on CUHK-SYSU and PRW datasets show that the proposed algorithm can significantly improve the search accuracy of person search.
备注/Memo
收稿日期:2024-7-25。
基金项目:国家重点研发计划项目(2022YFB3104700);国家自然科学基金项目(62376198,62163016).
作者简介:苗春玲,硕士研究生,主要研究方向为行人搜索和深度学习。E-mail:miaochunling@tongji.edu.cn。;张红云,副教授,博士生导师,主要研究方向为粒计算和计算机视觉。E-mail:zhanghongyun@tongji.edu.cn。;苗夺谦,教授,博士生导师,国际粗糙集学会会士,中国人工智能学会会士,嵌入式系统与服务计算教育部重点实验室副主任,上海市计算机学会副理事长,上海市人工智能学会副理事长。主要研究方向为人工智能、机器学习、粒度计算、粗糙集。主持完成国家自然科学基金项目6项,主持并参与省部级自然科学基金项目与科技攻关项目30余项。获得教育部科技进步一等奖、上海市技术发明一等奖、重庆市自然科学一等奖和中国人工智能学会吴文俊人工智能自然科学二等奖。发表学术论文180余篇。E-mail:dqmiao@tongji.edu.cn。
通讯作者:苗夺谦. E-mail:dqmiao@tongji.edu.cn
更新日期/Last Update:
2025-01-05