[1]管凤旭,张涵宇,路斯棋,等.扩散模型在计算机视觉领域的研究现状[J].智能系统学报,2025,20(2):265-282.[doi:10.11992/tis.202312041]
 GUAN Fengxu,ZHANG Hanyu,LU Siqi,et al.Research status of diffusion models in computer vision[J].CAAI Transactions on Intelligent Systems,2025,20(2):265-282.[doi:10.11992/tis.202312041]
点击复制

扩散模型在计算机视觉领域的研究现状

参考文献/References:
[1] CRIMINISI A, PEREZ P, TOYAMA K. Object removal by exemplar-based inpainting[C]//2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison: IEEE, 2003: II.
[2] WANG Zhou, YU Yinglin, ZHANG D. Best neighborhood matching: an information loss restoration technique for block-based image coding systems[J]. IEEE transactions on image processing, 1998, 7(7): 1056-1061.
[3] TURK M A, PENTLAND A P. Face recognition using eigenfaces[C]//Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Maui: IEEE, 1991: 586-591.
[4] REZENDE D J, MOHAMED S. Variational inference with normalizing flows[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille: PMLR, 2015: 1530-1538.
[5] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2013-12-20)[2023-12-27]. https://arxiv.org/abs/1312.6114.
[6] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[7] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020: 6840–6851.
[8] MENG Chenlin, HE Yutong, SONG Yang, et al. SDEdit: guided image synthesis and editing with stochastic differential equations[C]//International Conference on Learning Representations. Virtual: OpenReview.net, 2022: 1-33.
[9] LI Haoying, YANG Yifan, CHANG Meng, et al. SRDiff: Single image super-resolution with diffusion probabilistic models[J]. Neurocomputing, 2022, 479: 47-59.
[10] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 10674-10685.
[11] 闫志浩, 周长兵, 李小翠. 生成扩散模型研究综述[J]. 计算机科学, 2024, 51(1): 273-283.
YAN Zhihao, ZHOU Zhangbing, LI Xiaocui. Survey on generative diffusion model[J]. Computer science, 2024, 51(1): 273-283.
[12] YANG Ling, ZHANG Zhilong, SONG Yang, et al. Diffusion models: a comprehensive survey of methods and applications[J]. ACM computing surveys, 2024, 56(4): 1-39.
[13] Brock A, Donahue J, Simonyan K. Large scale GAN training for high fidelity natural image synthesis[C]//International Conference on Learning Representations. New Orleans: OpenReview.net, 2019: 1–35.
[14] SAUER A, SCHWARZ K, GEIGER A. StyleGAN-XL: scaling StyleGAN to large diverse datasets[C]//Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings. Vancouver: ACM, 2022: 1–10.
[15] 曹锦纲, 李金华, 郑顾平. 基于生成式对抗网络的道路交通模糊图像增强[J]. 智能系统学报, 2020, 15(3): 491-498.
CAO Jingang, LI Jinhua, ZHENG Guping. Enhancement of blurred road-traffic images based on generative adversarial network[J]. CAAI transactions on intelligent systems, 2020, 15(3): 491-498.
[16] 严浙平, 曲思瑜, 邢文. 水下图像增强方法研究综述[J]. 智能系统学报, 2022, 17(5): 860-873.
YAN Zheping, QU Siyu, XING Wen. An overview of underwater image enhancement methods[J]. CAAI transactions on intelligent systems, 2022, 17(5): 860-873.
[17] 姜义, 吕荣镇, 刘明珠, 等. 基于生成对抗网络的人脸口罩图像合成[J]. 智能系统学报, 2021, 16(6): 1073-1080.
JIANG Yi, LYU Rongzhen, LIU Mingzhu, et al. Masked face image synthesis based on a generative adversarial network[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1073-1080.
[18] 毕晓君, 潘梦迪. 基于生成对抗网络的机载遥感图像超分辨率重建[J]. 智能系统学报, 2020, 15(1): 74-83.
BI Xiaojun, PAN Mengdi. Super-resolution reconstruction of airborne remote sensing images based on the generative adversarial networks[J]. CAAI transactions on intelligent systems, 2020, 15(1): 74-83.
[19] REZENDE D J, MOHAMED S, WIERSTRA D. Stochastic backpropagation and approximate inference in deep generative models[C]//Proceedings of the 31st International Conference on International Conference on Machine Learning. Beijing: PMLR, 2014: 3057-3070.
[20] 张冀, 曹艺, 王亚茹, 等. 融合VAE和StackGAN的零样本图像分类方法[J]. 智能系统学报, 2022, 17(3): 593-601.
ZHANG Ji, CAO Yi, WANG Yaru, et al. Zero-shot image classification method combining VAE and StackGAN[J]. CAAI transactions on intelligent systems, 2022, 17(3): 593-601.
[21] RAZAVI A, OORD A V D, VINYALS O. Generating diverse high-fidelity images with VQ-VAE-2[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019: 1–15.
[22] CHANG Huiwen, ZHANG Han, JIANG Lu, et al. MaskGIT: masked generative image transformer[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11305-11315.
[23] ZHANG Qinsheng, CHEN Yongxin. Diffusion normalizing flow[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2021: 16280–16291.
[24] SOHL-DICKSTEIN J, WEISS E A, MAHESWARANATHAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille: JMLR, 2015: 2246–2255.
[25] SONG Yang, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations[C]//International Conference on Learning Representations. Virtual: OpenReview.net, 2020: 1–23.
[26] SONG Yang, ERMON S. Generative modeling by estimating gradients of the data distribution[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019: 1–36.
[27] ANDERSON B D O. Reverse-time diffusion equation models[J]. Stochastic processes and their applications, 1982, 12(3): 313-326.
[28] JOLICOEUR-MARTINEAU A, LI Ke, PICHé-TAILLEFER R, et al. Gotta go fast when generating data with score-based models[EB/OL]. (2021-05-28)[2023-12-27]. https://arxiv.org/abs/2105.14080.
[29] VINCENT P. A connection between score matching and denoising autoencoders[J]. Neural computation, 2011, 23(7): 1661-1674.
[30] SONG Jiaming, MENG Chenlin, ERMON S. Denoising diffusion implicit models[C]//International Conference on Learning Representations. Virtual: OpenReview.net, 2021: 1–22.
[31] LIU Luping, REN Yi, LIN Zhijie, et al. Pseudo numerical methods for diffusion models on manifolds[C]//International Conference on Learning Representations. Virtual: OpenReview.net, 2022: 1–24.
[32] HARRISON G. Consistency models[M]//Next Generation Databases. Berkeley: Apress, 2015: 127-144.
[33] HUANG Rongjie, ZHAO Zhou, LIU Huadai, et al. ProDiff: progressive fast diffusion model for high-quality text-to-speech[C]//Proceedings of the 30th ACM International Conference on Multimedia. Lisboa: ACM, 2022: 2595–2605.
[34] MENG Chenlin, ROMBACH R, GAO Ruiqi, et al. On distillation of guided diffusion models[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 14297-14306.
[35] SHANG Yuzhang, YUAN Zhihang, XIE Bin, et al. Post-training quantization on diffusion models[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 1972-1981.
[36] LI Yanyu, WANG Huan, JIN Qing, et al. SnapFusion: text-to-image diffusion model on mobile devices within two seconds[EB/OL]. (2023-06-01)[2023-12-27]. https://arxiv.org/abs/2306.00980.
[37] XIAO Zhisheng, KREIS K, VAHDAT A. Tackling the generative learning trilemma with denoising diffusion GANs[C]//International Conference on Learning Representations. Virtual: OpenReview.net, 2022: 1–28.
[38] PANDEY K, MUKHERJEE A, RAI P, et al. DiffuseVAE?: efficient, controllable and high-fidelity generation from low-dimensional latents[J]. Transactions on machine learning research, 2022: 1–39.
[39] SONG Yang, DURKAN C, MURRAY I, et al. Maximum likelihood training of score-based diffusion models[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2021: 1415–1428.
[40] LU Cheng, ZHENG Kaiwen, BAO Fan, et al. Maximum likelihood training for score-based diffusion ODEs by high-order denoising score matching[C]//International Conference on Machine Learning. New York: PMLR, 2022: 14429–14460.
[41] KIM D, NA B, KWON S J, et al. Maximum likelihood training of implicit nonlinear diffusion models[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022: 32270–32284.
[42] AUSTIN J, JOHNSON D D, HO J, et al. Structured denoising diffusion models in discrete state-spaces[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2021: 17981–17993.
[43] NICHOL A, DHARIWAL P. Improved denoising diffusion probabilistic models[C]//Proceedings of the 38th International Conference on Machine Learning. New York: PMLR, 2021: 8162–8171.
[44] KINGMA D P, SALIMANS T, POOLE B, et al. Variational diffusion models[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2021: 21696–21707.
[45] HOOGEBOOM E, GRITSENKO A A, BASTINGS J, et al. Autoregressive diffusion models[C]//International Conference on Learning Representations. Virtual: OpenReview.net, 2022: 1–23.
[46] CAMPBELL A, BENTON J, DELIGIANNIDIS G, et al. A continuous time framework for discrete denoising models[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022: 28266–28279.
[47] GU Shuyang, CHEN Dong, BAO Jianmin, et al. Vector quantized diffusion model for text-to-image synthesis[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 10686-10696.
[48] TANG Zhicong, GU Shuyang, BAO Jianmin, et al. Improved vector quantized diffusion models[EB/OL]. (2022-05-31)[2023-12-27]. https://arxiv.org/abs/2205.16007.
[49] NIU Chenhao, SONG Yang, SONG Jiaming, et al. Permutation invariant graph generation via score-based generative modeling[C]//Proceedings of the 23rd International Conference on Artificial Intelligence and Statistic. Palermo: PMLR, 2020: 4474–4484.
[50] JO J, LEE S, HWANG S J. Score-based generative modeling of graphs via the system of stochastic differential equations[C]//Proceedings of the 39th International Conference on Machine Learning. Baltimore: PMLR, 2022: 10362–10383.
[51] LUO Shitong, HU Wei. Diffusion probabilistic models for 3D point cloud generation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 2836-2844.
[52] XU Minkai, YU Lantao, SONG Yang, et al. GeoDiff: a geometric diffusion model for molecular conformation generation[C]//International Conference on Learning Representations. Virtual: OpenReview.net, 2022: 1–19.
[53] BORTOLI V De, MATHIEU é, HUTCHINSON M, et al. Riemannian score-based generative modelling[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022: 2406–2422.
[54] HUANG C W, AGHAJOHARI M, BOSE A J, et al. Riemannian diffusion models[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022: 2750–2761.
[55] VAHDAT A, KREIS K, KAUTZ J. Score-based generative modeling in latent space[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2021: 11287–11302.
[56] HO J, SAHARIA C, CHAN W, et al. Cascaded diffusion models for high fidelity image generation[J]. The journal of machine learning research, 2022, 23(1): 2249-2281.
[57] DHARIWAL P, NICHOL A. Diffusion models beat GANs on image synthesis[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2021: 8780–8794.
[58] KIM D, KIM Y, KWON S J, et al. Refining generative process with discriminator guidance in score-based diffusion models[C]//Proceedings of the 40th International Conference on Machine Learning. Honolulu: JMLR, 2023: 16567–16598.
[59] GAO Shanghua, ZHOU Pan, CHENG Mingming, et al. MDTv2: masked diffusion transformer is a strong image synthesizer[EB/OL]. (2023-03-25)[2023-12-27]. https://arxiv.org/abs/2303.14389.
[60] BATZOLIS G, STANCZUK J, SCH?NLIEB C B, et al. Conditional image generation with score-based diffusion models[EB/OL]. (2021-11-26)[2023-12-27]. https://arxiv.org/abs/2111.13606.
[61] NICHOL A, DHARIWAL P, RAMESH A, et al. GLIDE: towards photorealistic image generation and editing with text-guided diffusion models[C]//Proceedings of the 39th International Conference on Machine Learning. Baltimore: PMLR, 2022: 16784-16804.
[62] SAHARIA C, CHAN W, SAXENA S, et al. Photorealistic text-to-image diffusion models with deep language understanding[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022: 36479-36494.
[63] CROWSON K, BIDERMAN S, KORNIS D, et al. VQGAN-clip: open domain image generation and Editing with Natural language guidance[C]//Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 88-105.
[64] RAMESH A, DHARIWAL P, NICHOL A, et al. Hierarchical text-conditional image generation with CLIP latents[EB/OL]. (2022-04-13)[2023-12-27]. https://arxiv.org/abs/2204.06125.
[65] KAWAR B, ZADA S, LANG O, et al. Imagic: text-based real image editing with diffusion models[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 6007-6017.
[66] YANG Ling, HUANG Zhilin, SONG Yang, et al. Diffusion-based scene graph to image generation with masked contrastive pre-training[EB/OL]. (2022-11-21)[2023-12-27]. https://arxiv.org/abs/2211.11138.
[67] SADAT S, BUHMANN J, BRADLEY D, et al. CADS: unleashing the diversity of diffusion models through condition-annealed sampling[EB/OL]. (2023-10-26)[2023-12-27]. https://arxiv.org/abs/2310.17347.
[68] HATAMIZADEH A, SONG Jiaming, LIU Guilin, et al. DiffiT: diffusion vision transformers for image generation[EB/OL]. (2023-12-04)[2023-12-27]. https://arxiv.org/abs/2312.02139.
[69] HO J, SALIMANS T, GRITSENKO A, et al. Video diffusion models[EB/OL]. (2022-04-07)[2023-12-27]. https://arxiv.org/abs/2204.03458.
[70] NI Haomiao, SHI Changhao, LI Kai, et al. Conditional image-to-video generation with latent flow diffusion models[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 18444-18455.
[71] LUO Zhengxiong, CHEN Dayou, ZHANG Yingya, et al. VideoFusion: decomposed diffusion models for high-quality video generation[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 10209–10218.
[72] YU S, SOHN K, KIM S, et al. Video probabilistic diffusion models in projected latent space[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 18456-18466.
[73] VAN DER HELM P A. Simplicity in vision: a multidisciplinary account of perceptual organization[M]. Cambridge: Cambridge University Press, 2014: 1–8.
[74] SAHARIA C, CHAN W, CHANG Huiwen, et al. Palette: image-to-image diffusion models[C]//Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings. Vancouver: ACM, 2022: 1–10.
[75] OZBEY M, DALMAZ O, DAR S U H, et al. Unsupervised medical image translation with adversarial diffusion models[J]. IEEE transactions on medical imaging, 2023, 42(12): 3524-3539.
[76] SAHARIA C, HO J, CHAN W, et al. Image super-resolution via iterative refinement[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(4): 4713-4726.
[77] SAHAK H, WATSON D, SAHARIA C, et al. Denoising diffusion probabilistic models for robust image super-resolution in the wild[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020: 6840-6851.
[78] GAO Sicheng, LIU Xuhui, ZENG Bohan, et al. Implicit diffusion models for continuous super-resolution[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 10021-10030.
[79] LUGMAYR A, DANELLJAN M, ROMERO A, et al. RePaint: inpainting using denoising diffusion probabilistic models[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11451-11461.
[80] XIE Shaoan, ZHANG Zhifei, LIN Zhe, et al. SmartBrush: text and shape guided object inpainting with diffusion model[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 22428-22437.
[81] WANG Zhixin, ZHANG Ziying, ZHANG Xiaoyun, et al. DR2: diffusion-based robust degradation remover for blind face restoration[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 1704-1713.
[82] FEI Ben, LYU Zhaoyang, PAN Liang, et al. Generative diffusion prior for unified image restoration and enhancement[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 9935-9946.
[83] BARANCHUK D, RUBACHEV I, VOYNOV A, et al. Label-efficient semantic segmentation with diffusion models[C]//International Conference on Learning Representations. Virtual: OpenReview.net, 2021: 1–15.
[84] BREMPONG E A, KORNBLITH S, CHEN Ting, et al. Denoising pretraining for semantic segmentation[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 4174-4185.
[85] AMIT T, NACHMANI E, SHAHARBANY T, et al. SegDiff: image segmentation with diffusion probabilistic models[EB/OL]. (2021-12-01)[2023-12-27]. https://arxiv.org/abs/2112.00390.
[86] CHEN Shoufa, SUN Peize, SONG Yibing, et al. DiffusionDet: diffusion model for object detection[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 19773-19786.
[87] ZHOU Linqi, DU Yilun, WU Jiajun. 3D shape generation and completion through point-voxel diffusion[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 5806-5815.
[88] LYU Zhaoyang, KONG Zhifeng, XU Xudong, et al. A conditional point diffusion-refinement paradigm for 3D point cloud completion[C]//International Conference on Learning Representations. Virtual: OpenReview.net, 2021: 1–24.
[89] WANG Tengfei, ZHANG Bo, ZHANG Ting, et al. RODIN: a generative model for sculpting 3D digital avatars using diffusion[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 4563-4573.
[90] LYU Zhaoyang, WANG Jinyi, AN Yuwei, et al. Controllable mesh generation through sparse latent point diffusion models[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 271-280.
[91] CHUNG H, RYU D, MCCANN M T, et al. Solving 3D inverse problems using pre-trained 2D diffusion models[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 22542-22551.
[92] SONG Yang, SHEN Liyue, XING Lei, et al. Solving inverse problems in medical imaging with score-based generative models[C]//International Conference on Learning Representations. Virtual: OpenReview.net, 2021: 1–18.
相似文献/References:
[1]冀俊忠,刘椿年,黄 振.基于信息素扩散模型解耦控制策略的蚁群算法[J].智能系统学报,2007,2(4):1.
 JI Jun-zhong,LIU Chun-nian,HUANG Zhen.An ant colony optimization algorithm based on a decouplingcontrol strategy of pheromone diffusion model[J].CAAI Transactions on Intelligent Systems,2007,2():1.
[2]赵振兵,冯烁,赵文清,等.融合知识迁移和改进YOLOv6的变电设备热像检测方法[J].智能系统学报,2023,18(6):1213.[doi:10.11992/tis.202303030]
 ZHAO Zhenbing,FENG Shuo,ZHAO Wenqing,et al.Thermd image detection method for substation equipment by incorporating knowledge migration and improved YOLOv6[J].CAAI Transactions on Intelligent Systems,2023,18():1213.[doi:10.11992/tis.202303030]
[3]蒋世杰,夏秀山,翟伟,等.基于ODE扩散模型的多类异常检测和定位[J].智能系统学报,2025,20(2):376.[doi:10.11992/tis.202402022]
 JIANG Shijie,XIA Xiushan,ZHAI Wei,et al.ODE diffusion model for multiclass anomaly detection and localization[J].CAAI Transactions on Intelligent Systems,2025,20():376.[doi:10.11992/tis.202402022]

备注/Memo

收稿日期:2023-12-27。
基金项目:国家自然科学基金项目(62101156).
作者简介:管凤旭,副教授,博士,主要研究方向为无人系统自主控制、机器视觉目标检测与跟踪、计算机控制及应用。获授权发明专利近20项,发表学术论文40余篇,出版教材5部。E-mail:guanfengxu@hrbeu.edu.cn;张涵宇,硕士研究生,主要研究方向为图像去雾、计算机视觉。E-mail:zhy875329435@163.com;路斯棋,硕士研究生,主要研究方向为水下图像处理、计算机视觉。E-mail:lusiqi9803@163.com。
通讯作者:管凤旭. E-mail:guanfengxu@hrbeu.edu.cn

更新日期/Last Update: 2025-03-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com