[1]吴启龙,朱齐丹.基于线性自抗扰控制的纵向舰载机直接升力全自动着舰控制[J].智能系统学报,2024,19(1):142-152.[doi:10.11992/tis.202304047]
 WU Qilong,ZHU Qidan.Direct lift fully-automatic landing control of longitudinal carrier-based aircraft on basis of linear active disturbance rejection control[J].CAAI Transactions on Intelligent Systems,2024,19(1):142-152.[doi:10.11992/tis.202304047]
点击复制

基于线性自抗扰控制的纵向舰载机直接升力全自动着舰控制

参考文献/References:
[1] PRICKETT A L, PARKES C J. Flight testing of the F/A-18E/F automatic carrier landing system[C]//2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542). Piscataway: IEEE, 2002: 2593?2612.
[2] LUO Fei, ZHANG Junhong, LYU Pengfei, et al. Carrier-based aircraft precision landing using direct lift control based on incremental nonlinear dynamic inversion[J]. IEEE access, 2022, 10: 55709–55725.
[3] DESALVO M, HEATHCOTE D, SMITH M J, et al. Direct lift control using distributed aerodynamic bleed[C]//Proceedings of the AIAA Scitech 2019 Forum. Reston, Virginia: AIAA, 2019: AIAA2019?0591.
[4] 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析[J]. 系统工程与电子技术, 2018, 40(9): 2079–2091
WU Wenhai, WANG Jie, GAO Li, et al. Analysis on MAGIC CARPET carrier landing technology[J]. Systems engineering and electronics, 2018, 40(9): 2079–2091
[5] LIANG Hongyu, LI Zhengyang, SU Xichao, et al. Direct lift control of aircraft based on adaptive fuzzy dynamic inverse[C]//Proceedings of the 2019 4th International Conference on Robotics, Control and Automation. New York: ACM, 2019: 60?64.
[6] ZHU Hongyuan, LIU Xiaoxiong, ZHANG Yuehang, et al. Design of carrier-based aircraft landing control law based on direct force[M]. Singapore: Springer, 2021: 1153?1163.
[7] SUBRAHMANYAM M B. H-infinity design of F/A-18A automatic carrier landing system[J]. Journal of guidance, control, and dynamics, 1994, 17(1): 187–191.
[8] URNES J M, HESS R K. Development of the F/A-18A automatic carrier landing system[J]. Journal of guidance, control, and dynamics, 1985, 8(3): 289–295.
[9] 孙笑云, 江驹, 甄子洋, 等. 舰载飞机自适应模糊直接力着舰控制[J]. 西北工业大学学报, 2021, 39(2): 359–366
SUN Xiaoyun, JIANG Ju, ZHEN Ziyang, et al. Adaptive fuzzy direct lift control of aircraft carrier-based landing[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 359–366
[10] JAISWAL R, SHASTRY A, SWARNKAR S, et al. Adaptive longitudinal control of UAVs with direct lift control[J]. IFAC-Papersonline, 2016, 49(1): 296–301.
[11] ZHUANG Huixuan, SUN Qinglin, CHEN Zengqiang, et al. Back-stepping active disturbance rejection control for attitude control of aircraft systems based on extended state observer[J]. International journal of control, automation and systems, 2021, 19(6): 2134–2149.
[12] ZUO Yuefei, ZHU Xiaoyong, QUAN Li, et al. Active disturbance rejection controller for speed control of electrical drives using phase-locking loop observer[J]. IEEE transactions on industrial electronics, 2019, 66(3): 1748–1759.
[13] WANG Fenfen, LIU Xubo, TIAN Haiming, et al. An improved auto-disturbance rejection control method for hypersonic vehicle control system[C]//2020 Chinese Control and Decision Conference . Piscataway: IEEE, 2020: 3410?3415.
[14] WEI Bai, FENG Pan, BO Yangxing, et al. Visual landing system of UAV based on ADRC[C]//2017 29th Chinese Control and Decision Conference . Piscataway: IEEE, 2017: 7509?7514.
[15] GAO Tongyue, WANG Dongdong, FEI Tao, et al. Attitude decoupling controller design of dual-ducted SUAV based on ADRC system[J]. Applied mechanics and materials, 2014, 536/537: 1143–1148.
[16] WANG Zhaoji, ZHAO Tong. Based on robust sliding mode and linear active disturbance rejection control for attitude of quadrotor load UAV[J]. Nonlinear dynamics, 2022, 108(4): 3485–3503.
[17] LIU Chunqiang, LUO Guangzhao, DUAN Xiaoli, et al. Adaptive LADRC-based disturbance rejection method for electromechanical servo system[J]. IEEE transactions on industry applications, 2020, 56(1): 876–889.
[18] YU Shiwei, LIU Lie, HAN Lianghua, et al. Research on ultra-high power laser curing based on RBF neural network[C]//2022 Global Conference on Robotics, Artificial Intelligence and Information Technology. Piscataway: IEEE, 2022: 290?293.
[19] YANG Hongjun, LIU Jinkun. An adaptive RBF neural network control method for a class of nonlinear systems[J]. IEEE/CAA journal of automatica sinica, 2018, 5(2): 457–462.
[20] HAN Honggui, LU Wei, HOU Ying, et al. An adaptive-PSO-based self-organizing RBF neural network[J]. IEEE transactions on neural networks and learning systems, 2018, 29(1): 104–117.
[21] WANG Yangang, WANG Weijun, QU Xiangju. Multi-body dynamic system simulation of carrier-based aircraft ski-jump takeoff[J]. Chinese journal of aeronautics, 2013, 26(1): 104–111.
[22] ZHANG Wen, ZHANG Zhi, ZHU Qidan, et al. Dynamics model of carrier-based aircraft landing gears landed on dynamic deck[J]. Chinese journal of aeronautics, 2009, 22(4): 371–379.
[23] ZHEN Ziyang, JIANG Shuoying, MA Kun. Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering[J]. Aerospace science and technology, 2018, 81: 99–107.
[24] XIA Guihua, DONG Ran, XU Jiangtao, et al. Linearized model of carrier-based aircraft dynamics in final-approach air condition[J]. Journal of aircraft, 2016, 53(1): 33–47.
[25] KAHN A, EDWARDS D. Navigation, guidance and control for the CICADA expendable micro air vehicle[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2012: AIAA2012?4536.
[26] FAST B, MIKLOSOVIC R, RADKE A. Active disturbance rejection control of a MEMS gyroscope[C]//2008 American Control Conference. Piscataway: IEEE, 2008: 3746?3750.
[27] LAN Zebu. Applications of BP, convolutional and RBF networks[C]//2021 2nd International Conference on Computing and Data Science . Piscataway: IEEE, 2021: 543?547.
[28] YANG Fangfang, GUO Chen, JIANG Yunbiao. RBF based integrated ADRC controller for a ship dynamic positioning system[M]. Singapore: Springer, 2017: 673?680.
相似文献/References:
[1]李宗刚,贾英民.一类具有群体LEADER的多智能体系统的聚集行为[J].智能系统学报,2006,1(2):26.
 LI Zong-gang,JIA Ying-min.Aggregation of MultiAgent systems with group leaders[J].CAAI Transactions on Intelligent Systems,2006,1():26.
[2]胡成玉,吴湘宁,颜雪松.微粒群算法中粒子运动稳定性分析[J].智能系统学报,2011,6(5):445.
 HU Chengyu,WU Xiangning,YAN Xuesong.Stability analysis of the particle dynamics in a particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2011,6():445.
[3]王永帅,陈增强,孙明玮,等.一阶惯性大时滞系统Smith预估自抗扰控制[J].智能系统学报,2018,13(4):500.[doi:10.11992/tis.201705031]
 WANG Yongshuai,CHEN Zengqiang,SUN Mingwei,et al.Smith prediction and active disturbance rejection control for first-order inertial systems with long time-delay[J].CAAI Transactions on Intelligent Systems,2018,13():500.[doi:10.11992/tis.201705031]
[4]陈增强,刘俊杰,孙明玮.一种新型控制方法—自抗扰控制技术及其工程应用综述[J].智能系统学报,2018,13(6):865.[doi:10.11992/tis.201711029]
 CHEN Zengqiang,LIU Junjie,SUN Mingwei.Overview of a novel control method: active disturbance rejection control technology and its practical applications[J].CAAI Transactions on Intelligent Systems,2018,13():865.[doi:10.11992/tis.201711029]
[5]李洁,师五喜,李宝全.多移动机器人固定时间编队控制[J].智能系统学报,2023,18(6):1233.[doi:10.11992/tis.202208021]
 LI Jie,SHI Wuxi,LI Baoquan.Fixed-time formation control of multimobile robots[J].CAAI Transactions on Intelligent Systems,2023,18():1233.[doi:10.11992/tis.202208021]

备注/Memo

收稿日期:2023-04-24。
基金项目:国家自然科学基金项目(52171299).
作者简介:吴启龙,男,博士研究生,主要研究方向为舰载机全自动着舰系统设计、智能控制技术。E-mail:wuqilong@hrbeu.edu.cn;朱齐丹,教授,博士生导师,中国自动化学会应用委员会委员,国家绕月探测科学应用专家委员会专家,主要研究方向为机器人与智能控制、机器视觉检测技术、先进控制理论及应用和复杂系统分析与决策。主持国家自然科学基金项目、国家计划项目等近30 项。发表学术论文 200 余篇。E-mail:zhuqidan@hrbeu.edu.cn
通讯作者:朱齐丹. E-mail:zhuqidan@hrbeu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com