[1]赵文清,许丽娇,陈昊阳,等.多层特征融合与语义增强的盲图像质量评价[J].智能系统学报,2024,19(1):132-141.[doi:10.11992/tis.202301007]
ZHAO Wenqing,XU Lijiao,CHEN Haoyang,et al.Blind image quality assessment based on multi-level feature fusion and semantic enhancement[J].CAAI Transactions on Intelligent Systems,2024,19(1):132-141.[doi:10.11992/tis.202301007]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第1期
页码:
132-141
栏目:
学术论文—智能系统
出版日期:
2024-01-05
- Title:
-
Blind image quality assessment based on multi-level feature fusion and semantic enhancement
- 作者:
-
赵文清1,2, 许丽娇1, 陈昊阳1, 李梦伟1
-
1. 华北电力大学 控制与计算机工程学院, 河北 保定 071003;
2. 复杂能源系统智能计算教育部工程研究中心, 河北 保定 071003
- Author(s):
-
ZHAO Wenqing1,2, XU Lijiao1, CHEN Haoyang1, LI Mengwei1
-
1. School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, China;
2. Engineering Research Center of the Ministry of Education for Intelligent Computing of Complex Energy System Department, Baoding 071003, China
-
- 关键词:
-
深度学习; 图像质量; 卷积神经网络; 特征提取; 通道注意力结构; 多层次特征融合; 扩张卷积; 三元组损失函数
- Keywords:
-
deep learning; image quality; convolution neural network; feature extraction; channel attention structure; multi-level feature fusion; dilated convolution; triplet loss function
- 分类号:
-
TP391.41
- DOI:
-
10.11992/tis.202301007
- 文献标志码:
-
2023-07-31
- 摘要:
-
针对现有盲图像质量评价算法在面对真实失真图像时性能较差的问题,本文提出多层特征融合和语义信息增强相结合的无参考图像质量评价算法。提取图像的局部和全局失真特征,利用特征融合模块对特征进行多层融合;利用多层扩张卷积增强语义信息,进而指导失真图像到质量分数的映射过程;考虑预测分数和主观分数之间的相对排名关系,对L1损失函数和三元组排名损失函数进行融合,构建新的损失函数Lmix。为了验证本文方法的有效性,在野生图像质量挑战数据集上进行了验证和对比实验,该算法的斯皮尔曼等级相关系数与皮尔逊线性相关系数指标相比原算法分别提升2.3%和2.3%;在康斯坦茨真实图像质量数据数据集和野生图像质量挑战数据集上进行了跨数据集实验,该算法在面对真实失真图像时表现出了良好的泛化性能。
- Abstract:
-
Aiming at the low performance of the existing blind image quality assessment algorithm when facing the real distorted images, the paper proposes a new no-reference image quality assessment algorithm, namely multi-level feature fusion and semantic enhancement for NR (MFFSE-NR), which combines multi-level feature fusion and semantic information enhancement. The local and global distortion features of an image are extracted, then a feature fusion module is used to fuse the features in layers. The multi-layer dilated convolution is employed to enhance semantic information and further direct the mapping process from distorted image to quality fraction. Finally, a novel loss function called Lmix is created by combining the triplet ranking loss function and the L1 loss function, taking account of the relative ranking relationship between the predicted score and the subjective score. Validation and comparison experiments carried out on LIVEC dataset show that both the SROCC and PLCC index are improved respectively by 2.3% than the original algorithm; cross-dataset validation on the KonIQ-10k dataset and LIVEC dataset confirm that the proposed algorithm has good generalization ability when dealing with the real distorted images.
备注/Memo
收稿日期:2023-01-09。
基金项目:国家自然科学基金项目(61773160, 61871182);河北省自然科学基金项目(F2021502013);中央高校基本科研业务费项目(2020MS153,2021PT018).
作者简介:赵文清,教授,主要研究方向为人工智能与图像处理。主持和参与国家自然科学基金项目、河北省自然科学基金项目、中央高校基本科研业务费专项资金资助项目和国家电网科技项目等10余项。获河北省科技进步二等奖、三等奖各1项。发表学术论文80余篇, 出版专著1部。E-mai:jbzwq@126.com。;许丽娇,硕士研究生,主要研究方向为图像质量评价。E-mai:xulijiao2021@163.com。;陈昊阳,硕士研究生,主要研究方向为图像质量评价。E-mai:870715478@qq.com。
通讯作者:赵文清. E-mail:jbzwq@126.com
更新日期/Last Update:
1900-01-01