[1]张少乐,雷涛,王营博,等.基于多尺度金字塔Transformer的人群计数方法[J].智能系统学报,2024,19(1):67-78.[doi:10.11992/tis.202304044]
 ZHANG Shaole,LEI Tao,WANG Yingbo,et al.A crowd counting network based on multi-scale pyramid Transformer[J].CAAI Transactions on Intelligent Systems,2024,19(1):67-78.[doi:10.11992/tis.202304044]
点击复制

基于多尺度金字塔Transformer的人群计数方法

参考文献/References:
[1] LIU Hong, XU Bin, LU Dianjie, et al. A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm[J]. Applied soft computing, 2018, 68: 360–376.
[2] KHAN M A, MENOUAR H, HAMILA R. Revisiting crowd counting: state-of-the-art, trends, and future perspectives[J]. Image and vision computing, 2023, 129: 104597.
[3] DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: an evaluation of the state of the art[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 34(4): 743–761.
[4] 齐鹏宇, 王洪元, 张继, 等. 基于改进FCOS的拥挤行人检测算法[J]. 智能系统学报, 2021, 16(4): 811–818
QI Pengyu, WANG Hongyuan, ZHANG Ji, et al. Crowded pedestrian detection algorithm based on improved FCOS[J]. CAAI transactions on intelligent systems, 2021, 16(4): 811–818
[5] CHEN Ke, GONG Shaogang, XIANG Tao, et al. Cumulative attribute space for age and crowd density estimation[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 2467?2474.
[6] LEMPITSKY V, ZISSERMAN A. Learning to count objects in images advances in neural information processing systems, 2010, 23: 1324–1332.
[7] ZHANG Yingying, ZHOU Desen, CHEN Siqin, et al. Single-image crowd counting via multi-column convolutional neural network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2016: 589?597.
[8] LI Yuhong, ZHANG Xiaofan, CHEN Deming. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1091?1100.
[9] SINDAGI V A, PATEL V M. Generating high-quality crowd density maps using contextual pyramid CNNs[C]//2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1879?1888.
[10] HOSSAIN M, HOSSEINZADEH M, CHANDA O, et al. Crowd counting using scale-aware attention networks[C]//2019 IEEE Winter Conference on Applications of Computer Vision . Piscataway : IEEE, 2019: 1280?1288.
[11] DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]//2017 IEEE International Conference on Computer Vision . Piscataway: IEEE, 2017: 764?773.
[12] SHEN Zan, XU Yi, NI Bingbing, et al. Crowd counting via adversarial cross-scale consistency pursuit[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5245?5254.
[13] LIANG Dingkang, CHEN Xiwu, XU Wei, et al. TransCrowd: weakly-supervised crowd counting with transformers[J]. Science China information sciences, 2022, 65(6): 1–14.
[14] JIANG Xiaoheng, ZHANG Li, ZHANG Tianzhu, et al. Density-aware multi-task learning for crowd counting[J]. IEEE transactions on multimedia, 2020, 23: 443–453.
[15] CHAUDHARI S, MITHAL V, POLATKAN G, et al. An attentive survey of attention models[J]. ACM transactions on intelligent systems and technology, 2021, 12(5): 1–32.
[16] LIU Ning, LONG Yongchao, ZOU Changqing, et al. ADCrowdNet: an attention-injective deformable convolutional network for crowd understanding[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 3220?3229.
[17] JIANG Xiaoheng, ZHANG Li, XU Mingliang, et al. Attention scaling for crowd counting[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 4705?4714.
[18] LEI Tao, ZHANG Dong, WANG Risheng, et al. MFP-Net: multi-scale feature pyramid network for crowd counting[J]. IET image processing, 2021, 15(14): 3522–3533.
[19] LIAN Dongze, LI Jing, ZHENG Jia, et al. Density map regression guided detection network for RGB-D crowd counting and localization[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 1821?1830.
[20] WANG Boyu, LIU Huidong, SAMARAS D, et al. Distribution matching for crowd counting[EB/OL]. (2020?09?28)[2023?04?30]. 2009.13077. https://arxiv.org/abs/2009.13077.pdf.
[21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000?6010.
[22] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2020?10?22)[2023?04?30]. https://arxiv.org/abs/2010.11929.pdf.
[23] WANG Wenhai, XIE Enze, LI Xiang, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//2021 IEEE/CVF International Conference on Computer Vision . Piscataway: IEEE, 2022: 548?558.
[24] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2017: 1800?1807.
[25] 雷涛, 王洁, 薛丁华, 等. 差异特征融合的无监督SAR图像变化检测[J]. 智能系统学报, 2021, 16(3): 595–604
LEI Tao, WANG Jie, XUE Dinghua, et al. Unsupervised SAR image change detection based on difference feature fusion[J]. CAAI transactions on intelligent systems, 2021, 16(3): 595–604
[26] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. (2015?11?23)[2023?04?30]. https://arxiv.org/abs/1511.07122.pdf.
[27] LEE Chenyu, XIE Saining, GALLAGHER P, et al. Deeply-supervised nets[EB/OL]. (2014?09?18)[2023?04?30]. https://arxiv.org/abs/1409.5185.pdf.
[28] IDREES H, TAYYAB M, ATHREY K, et al. Composition loss for counting, density map estimation and localization in dense crowds[C]//Computer Vision - ECCV 2018: 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part II. New York: ACM, 2018: 544?559.
[29] WANG Qi, GAO Junyu, LIN Wei, et al. NWPU-crowd: a large-scale benchmark for crowd counting and localization[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(6): 2141–2149.
[30] MENG Yanda, ZHANG Hongrun, ZHAO Yitian, et al. Spatial uncertainty-aware semi-supervised crowd counting[C]//2021 IEEE/CVF International Conference on Computer Vision . Piscataway: IEEE, 2022: 15529?15539.
[31] CHEN Qi, LEI Tao, GENG Xinzhe, et al. DLMP-net: a dynamic yet lightweight multi-pyramid network for crowd density estimation[C]//Chinese Conference on Pattern Recognition and Computer Vision . Cham: Springer, 2022: 27?39.
[32] LIANG Lanjun, ZHAO Huailin, ZHOU Fangbo, et al. SC2Net: scale-aware crowd counting network with pyramid dilated convolution[J]. Applied intelligence, 2023, 53(5): 5146–5159.
[33] LIANG Dingkang, XU Wei, ZHU Yingying, et al. Focal inverse distance transform maps for crowd localization[J]. IEEE transactions on multimedia, 2023, 25: 6040–6052.
[34] YANG Yifan, LI Guorong, WU Zhe, et al. Weakly-supervised crowd counting learns from sorting rather than locations[C]//Vedaldi A, Bischof H, Brox T, et al. European Conference on Computer Vision. Cham: Springer, 2020: 1?17.
[35] LEI Yinjie, LIU Yan, ZHANG Pingping, et al. Towards using count-level weak supervision for crowd counting[J]. Pattern recognition, 2021, 109: 107616.
[36] ZAND M, DAMIRCHI H, FARLEY A, et al. Multiscale crowd counting and localization by multitask point supervision[C]//ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing . Piscataway: IEEE, 2022: 1820?1824.

备注/Memo

收稿日期:2023-04-30。
基金项目:国家自然科学基金项目 (62271296,62201334);陕西省重点研发计划项目(2021ZDLGY08-07);陕西省杰出青年科学基金项目(2021JC-47).
作者简介:张少乐,硕士研究生,主要研究方向为计算机视觉、机器学习。E-mail:210612054@sust.edu.cn;雷涛,教授,博士生导师,陕西科技大学电子信息与人工智能学院副院长、IEEE 高级会员,主要研究方向为计算机视觉、机器学习。主持国家自然科学基金项目 5 项、陕西省重点研发计划、中国博士后科学基金等6项,授权发明专利 15 项,获陕西省科学技术二等奖 1 项(自然科学奖)。发表学术论文 90 余篇。E-mail:leitao@sust.edu.cn;王营博,讲师,主要研究方向为散射环境下图像复原与场景感知。参与国家自然科学基金面上项目、高分重大专项等项目 5 项,授权发明专利 8 项,授权软件著作权 1 项。发表学术论文 20 余篇。E-mail:wangyingbo@sust.edu.cn
通讯作者:雷涛. E-mail:leitao@sust.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com