[1]赵振兵,冯烁,赵文清,等.融合知识迁移和改进YOLOv6的变电设备热像检测方法[J].智能系统学报,2023,18(6):1213-1222.[doi:10.11992/tis.202303030]
 ZHAO Zhenbing,FENG Shuo,ZHAO Wenqing,et al.Thermd image detection method for substation equipment by incorporating knowledge migration and improved YOLOv6[J].CAAI Transactions on Intelligent Systems,2023,18(6):1213-1222.[doi:10.11992/tis.202303030]
点击复制

融合知识迁移和改进YOLOv6的变电设备热像检测方法

参考文献/References:
[1] 周远翔, 陈健宁, 张灵, 等. “双碳”与“新基建”背景下特高压输电技术的发展机遇[J]. 高电压技术, 2021, 47(7): 2396–2408
ZHOU Yuanxiang, CHEN Jianning, ZHANG Ling, et al. Opportunity for developing ultra high voltage transmission technology under the emission peak, carbon neutrality and new infrastructure[J]. High voltage engineering, 2021, 47(7): 2396–2408
[2] 翟永杰, 王乾铭, 杨旭, 等. 融合外部知识的输电线路多金具解耦检测方法[J]. 智能系统学报, 2022, 17(5): 980–989
ZHAI Yongjie, WANG Qianming, YANG Xu, et al. A multi-fitting decoupling detection method for transmission lines based on external knowledge[J]. CAAI transactions on intelligent systems, 2022, 17(5): 980–989
[3] 赵振兵, 孔英会, 戚银城. 面向智能输变电的图像处理技术[M]. 北京: 中国电力出版社, 2014.
[4] 戴云峰, 冯兴明, 丁亚杰, 等. 单阶段目标检测网络的实例分割方法[J]. 应用科技, 2023, 50(6): 42–47
DAI Yunfeng, FENG Xingming, DING Yajie, et al. Instance segmentation method based on single-stage object detection network[J]. Applied science and technology, 2023, 50(6): 42–47
[5] 杜景博, 姜勇. 基于YOLOv5-nS算法的绝缘子串销钉检测方法[J]. 应用科技, 2023, 50(6): 1–6
DU Jingbo, JIANG Yong. Insulator string pin detection method based on YOLOv5-nS algorithm[J]. Applied science and technology, 2023, 50(6): 1–6
[6] 赵振兵, 王睿, 赵文清, 等. 基于图知识推理的输电线路缺销螺栓识别方法[J]. 智能系统学报, 2023, 18(2): 372–380
ZHAO Zhenbing, WANG Rui, ZHAO Wenqing, et al. Pinmissing bolts recognition method for transmission lines based on graph knowledge reasoning[J]. CAAI transactions on intelligent systems, 2023, 18(2): 372–380
[7] HAN Sheng, YANG Fan, JIANG Hui, et al. A smart thermography camera and application in the diagnosis of electrical equipment[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 1–8.
[8] ZHENG Hanbo, CUI Yaohui, YANG Wenqiang, et al. An infrared image detection method of substation equipment combining iresgroup structure and CenterNet[J]. IEEE transactions on power delivery, 2022, 37(6): 4757–4765.
[9] WANG Bin, DONG Ming, REN Ming, et al. Automatic fault diagnosis of infrared insulator images based on image instance segmentation and temperature analysis[J]. IEEE transactions on instrumentation and measurement, 2020, 69(8): 5345–5355.
[10] ZHENG Hanbo, SUN Yonghui, LIU Xinghua, et al. Infrared image detection of substation insulators using an improved fusion single shot multibox detector[J]. IEEE transactions on power delivery, 2021, 36(6): 3351–3359.
[11] OU Jianhua, WANG Jianguo, XUE Jian, et al. Infrared image target detection of substation electrical equipment using an improved faster R-CNN[J]. IEEE transactions on power delivery, 2023, 38(1): 387–396.
[12] HUANG Song, SHANG Bowen, SONG Yanlou, et al. Research on real-time disconnector state evaluation method based on multi-source images[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 1–15.
[13] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2023-03-22].https://arxiv.org/abs/2004.10934.
[14] ZHOU Xingyi, WANG Dequan, KR?HENBüHL P. Objects as points[EB/OL]. (2019-04-16)[2023-03-22].https://arxiv.org/abs/1904.07850.
[15] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
[16] LI Zuoxin, ZHOU Fuqiang. FSSD: feature fusion single shot multibox detector[EB/OL]. (2017-12-04)[2023-03-22].https://arxiv.org/abs/1712.00960.
[17] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. New York: ACM, 2015: 1440-1448.
[18] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
[19] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: ACM, 2020: 6840-6851.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000-6010.
[21] LI Chuyi, LI Lulu, JIANG Hongliang, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2023-03-22].https://arxiv.org/abs/2209.02976.
[22] TOLSTIKHIN I, HOULSBY N, KOLESNIKOV A, et al. MLP-mixer: an all-MLP architecture for vision[EB/OL]. (2021-05-04)[2023-03-22].https://arxiv.org/abs/2105.01601.
[23] QUAN Yu, ZHANG Dong, ZHANG Liyan, et al. Centralized feature pyramid for object detection[EB/OL]. (2022-10-05)[2023-03-22].https://arxiv.org/abs/2210.02093.
[24] HUANG Huimin, LIN Lanfen, TONG Ruofeng, et al. UNet 3: a full-scale connected UNet for medical image segmentation[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: IEEE, 2020: 1055-1059.
[25] WANG Xinglong, ZHANG R, KONG Tao, et al. Solov2: Dynamic and fast instance segmentation[J]. Advances in neural information processing systems, 2020, 33: 17721–17732.
[26] DING Xiaohan, ZHANG Xiangyu, MA Ningning, et al. RepVGG: making VGG-style ConvNets great again[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13728-13737.
[27] SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 16514-16524.
[28] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[29] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[30] GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-07-18)[2023-03-22].https://arxiv.org/abs/2107.08430.
[31] SELVARAJU R R, DAS A, VEDANTAM R, et al. Grad-CAM: why did You say that? [EB/OL]. (2016-11-22)[2023-03-22].https://arxiv.org/abs/1611.07450.
[32] CAI Zhaowei, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154-6162.
[33] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 9626-9635.
[34] CHEN Qiang, WANG Yingming, YANG Tong, et al. You only look one-level feature[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13039-13048.
[35] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. (2022-07-06)[2023-03-22].https://arxiv.org/abs/2207.02696.
相似文献/References:
[1]王凯旋,任福继,倪红军,等.基于循环互相关系数的CGAN温度值图像扩增[J].智能系统学报,2022,17(1):32.[doi:10.11992/tis.202106036]
 WANG Kaixuan,REN Fuji,NI Hongjun,et al.Image amplification for temperature value image based on cyclic cross-correlation coefficient CGAN[J].CAAI Transactions on Intelligent Systems,2022,17():32.[doi:10.11992/tis.202106036]

备注/Memo

收稿日期:2023-3-22。
基金项目:国家自然科学基金项目(61871182,U21A20486);河北省自然科学基金项目(F2020502009,F2021502008,F2021502013).
作者简介:赵振兵,教授,博士,主要研究方向为电力视觉。主持国家自然科学基金项目等纵向课题10项;获省科技进步一等奖2项;以第一完成人获得国家专利授权16项;以第一作者出版专著2部,发表学术论文50余篇;冯烁,硕士研究生,主要研究方向为电力视觉;赵文清,教授,博士,主要研究方向为人工智能和图像处理。发表学术论文80余篇
通讯作者:赵振兵.E-mail:zhaozhenbing@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com