[1]尚秋峰,郭家兴,黄达.基于BS-1DCNN的海缆振动信号识别[J].智能系统学报,2024,19(4):874-884.[doi:10.11992/tis.202210006]
 SHANG Qiufeng,GUO Jiaxing,HUANG Da.Submarine cable vibration signal recognition based on BS-1DCNN[J].CAAI Transactions on Intelligent Systems,2024,19(4):874-884.[doi:10.11992/tis.202210006]
点击复制

基于BS-1DCNN的海缆振动信号识别

参考文献/References:
[1] 张旭苹, 陈晓红, 梁蕾, 等. 长距离海缆在线监测改进C-OTDR系统[J]. 光学学报, 2021, 41(13): 1306001
ZHANG Xuping, CHEN Xiaohong, LIANG Lei, et al. Enhanced C-OTDR-based online monitoring scheme for long-distance submarine cables[J]. Acta optica sinica, 2021, 41(13): 1306001
[2] 张振鹏, 蒙绍新, 胡列翔, 等. 锚害对500 kV海底电缆结构层的影响[J]. 高电压技术, 2020, 46(2): 561–568
ZHANG Zhenpeng, MENG Shaoxin, HU Liexiang, et al. Effect of anchor damage on the structural layer of 500 kV submarine cable[J]. High voltage technology, 2020, 46(2): 561–568
[3] 鄢仁武, 林穿, 宋微浪, 等. 基于EEMD和卷积神经网络的高压断路器故障诊断[J]. 高压电器, 2022, 58(4): 213–220
YAN Renwu, LIN Chuan, SONG Weilang, et al. High voltage circuit fault based on EEMD and Convolutional neural network[J]. High pressure electrical appliances, 2022, 58(4): 213–220
[4] 于淼, 张耀鲁, 何禹潼, 等. 变分模态分解–排列熵方法用于分布式光纤振动传感系统去噪[J]. 光学学报, 2022, 42(7): 0706005
YU Miao, ZHANG Yaolu, HE Yutong, et al. Variational mode decomposition and permutation entropy method for denoising of distributed optical fiber vibration sensing system[J]. Acta optica sinica, 2022, 42(7): 0706005
[5] 郑莉, 刘闯, 任姣姣, 等. 基于LDA-CPSO-SVM优化的多层胶接结构脱粘缺陷识别方法[J]. 光子学报, 2021, 50(12): 114–121
ZHENG Li, LIU Chuang, REN Jiaojiao, et al. Based on LDA-CPSO-SVM optimization method[J]. Photonic journal, 2021, 50(12): 114–121
[6] FAN Xin, CHENG Jianyuan, WANG Yunhong, et al. Automatic events recognition in low SNR microseismic signals of coal mine based on wavelet scattering transform and SVM[J]. Energies, 2022, 15(7): 1–13.
[7] 朱煜峰, 许永鹏, 陈孝信, 等. 基于卷积神经网络的直流XLPE电缆局部放电模式识别技术[J]. 电工技术学报, 2020, 35(3): 659–66
ZHU Yufeng, XU Yongpeng, CHEN Xiaoxin, et al. Local discharge mode recognition technology of DC XLPE cable based on convolutional neural network[J]. Transactions on China electrotechnical society, 2020, 35(3): 659–66
[8] YAN Sen, SHANG Ying, WANG Chen, et al. Mixed intrusion events recognition based on group convolutional neural networks in DAS system[J]. IEEE sensors journal, 2022, 22(1): 678–684.
[9] HUANG Shuzhan, TANG Jian, DAI Juying, et al. Signal status recognition based on 1DCNN and its feature extraction mechanism analysis[J]. Sensors, 2019, 19(9): 1–19.
[10] MA Xinrong, MO Jiaqing, ZHANG Jiangwei, et al. Optical fiber vibration signal recognition based on the fusion of multi-scale features[J]. Sensors, 2022, 22(16): 1–16.
[11] 喻后聃, 米秋实, 赵栋, 等. 基于一维卷积神经网络的光纤周界入侵模式识别[J]. 光子学报, 2021, 50(9): 95–105
YU Houdan, MI Qiushi, Zhao Dong, et al. Fiber perimeter invasion pattern recognition based on a 1-dimensional convolutional neural network[J]. Photonic journal, 2021, 50(9): 95–105
[12] 李世晓, 杜锦华, 龙云. 基于一维卷积神经网络的机电作动器故障诊断[J]. 电工技术学报, 2022, 37(S1): 62–73
LI Shixiao, DU Jinhua, LONG Yun. Fault diagnosis of electromechanical actuator Based on 1-dimensional convolutional neural network[J]. Transactions on China electrotechnical society, 2022, 37(S1): 62–73
[13] LU Feiyu, TONG Qingbin, FENG Ziwei. Explainable 1DCNN with demodulated frequency features method for fault diagnosis of rolling bearing under time-varying speed conditions[J]. Measurement science and technology, 2022, 33(9): 1–19.
[14] 陈建, 姚剑飞, 赵洪杰, 等. 基于GA优化的VMD-SVM识别角度头故障特征[J]. 北京化工大学学报(自然科学版), 2022, 49(3): 47–54
CHEN Jian, YAO Jianfei, ZHAO Hongjie, et al. VMD-SVM identification based on GA optimization[J]. Journal of Beijing University of Chemical Technology (natural science edition), 2022, 49(3): 47–54
[15] YE Maoyou, YAN Xiaoan, JIA Minping. Rolling bearing fault diagnosis based on VMD-MPE and PSO-SVM[J]. Entropy, 2021, 23(6): 1–13.
[16] 尚秋峰, 郭家兴. 基于VMD-BSA-SVM的海缆振动信号识别方法[J]. 激光与光电子学进展, 2022, 59(17): 65–74
SHANG Qiufeng, GUO Jiaxing. Marine cable vibration signal identification method based on VMD-BSA-SVM[J]. Progress in laser and optoelectronics, 2022, 59(17): 65–74
[17] 刘立, 朱健成, 韩光洁, 等. 基于1D-CNN联合特征提取的轴承健康监测与故障诊断[J]. 软件学报, 2021, 32(8): 2379–2390
LIU Li, ZHU Jiancheng, HAN Guangjie, etc. Bearing health monitoring and fault diagnosis of sss based on 1D-CNN combined feature extraction[J]. Journal of software, 2021, 32(8): 2379–2390
[18] CAO Jie, HE Zhidong, WANG Jinhua, et al. An antinoise fault diagnosis method based on multiscale 1DCNN[J]. Shock and vibration, 2020, 20(1): 1–17.
[19] 崔石玉, 朱志宇. 基于参数迁移和一维卷积神经网络的海水泵故障诊断[J]. 振动与冲击, 2021, 40(24): 180–189
CUI Shiyu, ZHU Zhiyu. Fault diagnosis of seawater pump based on parameter migration and one-dimensional convolutional neural network[J]. Journal of vibration and shock, 2021, 40(24): 180–189
[20] 贾鹤鸣, 李瑶, 孙康健. 基于遗传乌燕鸥算法的同步优化特征选择[J]. 自动化学报, 2022, 48(6): 1601–1615
JIA Heming, LI Yao, SUN Kangjian. Synchronous optimization feature selection based on genetic tern algorithm[J]. Acta automatica sinica, 2022, 48(6): 1601–1615
[21] 尚秋峰, 巩彪, 郑国强. 锚砸作用下光纤复合海底电缆的振动特性分析[J]. 光通信研究, 2021(5): 45–49, 56
SHANG Qiufeng, GONG Biao, ZHENG Guoqiang. Analysis of vibration characteristics of optical fiber composite submarine cable under anchor impact[J]. Optical communication research, 2021(5): 45–49, 56
[22] 冯雨珊, 尚秋峰, 吕安强. 波浪力作用下光纤复合海底电缆动力学有限元分析[J]. 光通信研究, 2017(4): 30–34
FENG Yushang, SHANG Qiufeng, LYU Anqiang. Dynamic finite element analysis of optical fiber composite submarine cable under wave force[J]. Optical communication research, 2017(4): 30–34
[23] 柳小花. 光纤复合海底电缆扭转与磨损特性的有限元分析[D]. 保定: 华北电力大学. 2017.
LIU Xiaohua. Finite element analysis of torsion and wear characteristics of optical fiber composite submarine cable [D]. Baoding: North China Electric Power University. 2017.
[24] 梁礼明, 陈明理, 刘博文, 等. 基于图论的支持向量机核函数选择[J]. 计算机工程与设计, 2019, 40(5): 1316–1321
LIANG Liming, CHEN Mingli, LIU Bowen, et al. Support vector machine kernel function selection based on graph theory[J]. Computer engineering and design, 2019, 40(5): 1316–1321
[25] MENG Xianbing, LU Lihua, LIU Yu, et al. A new bio-inspired optimisation algorithm: bird swarm algorithm[J]. Journal of experimental & theoretical artificial intelligence, 2016, 28(4): 1–12.
[26] 杨帅, 郭茂祖, 赵玲玲, 等. 融合遗传算法与XGBoost的玉米百粒重相关基因挖掘[J]. 智能系统学报, 2022, 17(1): 170–180
YANG Shuai, GUO Maozu, ZHAO Lingling, et al. Fusion genetic algorithm with XGBoost for maize hundred-grain recorrelated gene mining[J]. Journal of intelligent systems, 2022, 17(1): 170–180
[27] 冯雪健, 邓浩川, 韦笑, 等. 基于GA和DE的非均匀等离子体介质参数重构算法研究[J]. 中国传媒大学学报(自然科学版), 2019, 26(3): 33–39
FENG Xuejian, DENG Haochuan, WEI Xiao, et al. Reconstruction algorithm of heterogeneous plasma media parameters based on GA and DE[J]. Journal of the Communication University of China (natural science edition), 2019, 26(3): 33–39
[28] KONSTANTIN Dragomiretskiy, DOMINIQUE Zosso. Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531–544.
[29] 郭家兴, 钱君霞, 柳瑞, 等. 基于麻雀搜索算法优化支持向量机的海缆振动信号识别方法[J]. 控制与信息技术, 2023(5): 47–54
GUO Jiaxing, QIAN Junxia, LIU Rui, et al. Based on sparrow search algorithm[J]. Control and information technology, 2023(5): 47–54
[30] 王望望, 邓林峰, 赵荣珍, 等. 集成KPCA与t-SNE的滚动轴承故障特征提取方法[J]. 振动工程学报, 2021, 34(2): 431-440.
WANG Wangwang, DENG Linfeng, ZHAO Rongzhen, et al. Fault feature extraction method of rolling bearing integrating KPCA and t-SNE[J] Journal of vibration engineering, 2021, 34 (2): 431-440.
相似文献/References:
[1]杨正理,吴馥云,陈海霞.深度残差收缩网络的多特征锅炉炉管声波信号故障识别[J].智能系统学报,2023,18(5):1108.[doi:10.11992/tis.202207012]
 YANG Zhengli,WU Fuyun,CHEN Haixia.Fault identification of multi-feature boiler tube acoustic signal based on deep residual shrinkage network[J].CAAI Transactions on Intelligent Systems,2023,18():1108.[doi:10.11992/tis.202207012]

备注/Memo

收稿日期:2022-10-07。
基金项目:国家自然科学基金项目(61775057)(E2019502179);河北省自然科学基金项目.
作者简介:尚秋峰,教授,博士,主要研究方向为光通信与光传感、模式识别与人工智能。负责河北省自然科学基金项目2项,参加国家863科技项目、国家自然基金项目等纵向项目5项,发表学术论文80余篇。E-mail:lindashqf@126.com;郭家兴,硕士研究生,主要研究方向为光通信与光传感、模式识别与人工智能。 E-mail:2650594653@qq.com;黄达,硕士研究生,主要研究方向为光通信与光传感、模式识别与人工智能。E-mail:1797963161@qq.com
通讯作者:尚秋峰. E-mail:lindashqf@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com