[1]赵嘉,马清,肖人彬,等.面向流形数据的共享近邻密度峰值聚类算法[J].智能系统学报,2023,18(4):719-730.[doi:10.11992/tis.202209026]
 ZHAO Jia,MA Qing,XIAO Renbin,et al.Density peaks clustering based on shared nearest neighbor for manifold datasets[J].CAAI Transactions on Intelligent Systems,2023,18(4):719-730.[doi:10.11992/tis.202209026]
点击复制

面向流形数据的共享近邻密度峰值聚类算法

参考文献/References:
[1] SHI Tianhao, DING Shifei, XU Xiao, et al. A community detection algorithm based on Quasi-Laplacian centrality peaks clustering[J]. Applied intelligence, 2021, 51(11): 7917–7932.
[2] DINOIA A, MARTINO A, MONTANARI P, et al. Supervised machine learning techniques and genetic optimization for occupational diseases risk prediction[J]. Soft computing, 2020, 24(6): 4393–4406.
[3] BUCZAK A L, GUVEN E. A survey of data mining and machine learning methods for cyber security intrusion detection[J]. IEEE communications surveys & tutorials, 2015, 18(2): 1153–1176.
[4] YAN Xiaoqiang. Synergetic information bottleneck for joint multi-view and ensemble clustering[J]. Information fusion, 2020, 56: 15–27.
[5] GAO Miao. Ship-handling behavior pattern recognition using AIS sub-trajectory clustering analysis based on the T-SNE and spectral clustering algorithms[J]. Ocean engineering, 2020, 205: 106919.
[6] 陈叶旺, 申莲莲, 钟才明, 等. 密度峰值聚类算法综述[J]. 计算机研究与发展, 2020, 57(2): 378–394
CHEN Yewang , SHEN Lianlian, ZHONG Caiming, et al. A review of density peak clustering algorithms[J]. Journal of computer research and development, 2020, 57(2): 378–394
[7] SUN Lin, QIN Xiaoying, DING Weiping, et al. Density peaks clustering based on k-nearest neighbors and self-recommendation[J]. International journal of machine learning and cybernetics, 2021, 12(7): 1913–1938.
[8] XIA Shuyin, PENG Daowan, MENG Deyu, et al. Ball k-means: fast adaptive clustering with No bounds[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(1): 87–99.
[9] BU Fanyu, ZHANG Qingchen, YANG L T, et al. An edge-cloud-aided high-order possibilistic c-means algorithm for big data clustering[J]. IEEE transactions on fuzzy systems, 2020, 28(12): 3100–3109.
[10] DING Jiajun, HE Xiongxiong, YUAN Junqing, et al. Automatic clustering based on density peak detection using generalized extreme value distribution[J]. Soft computing-A fusion of foundations, methodologies and applications, 2018, 22(9): 2777–2796.
[11] ABE K, MINOURA K, MAEDA Y, et al. Model-based clustering for flow and mass cytometry data with clinical information[J]. BMC bioinformatics, 2020, 21(suppl 13): 393.
[12] CHEUNG Y M, ZHANG Yiqun. Fast and accurate hierarchical clustering based on growing multilayer topology training[J]. IEEE transactions on neural networks and learning systems, 2019, 30(3): 876–890.
[13] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. New York: ACM, 1996: 226–231.
[14] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492–1496.
[15] XIE Juanying. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information sciences, 2016, 354: 19–40.
[16] DU Mingjing, DING Shifei, XUE Yu. A robust density peaks clustering algorithm using fuzzy neighborhood[J]. International journal of machine learning and cybernetics, 2018, 9(7): 1131–1140.
[17] ZHAO Jia, TANG Jingjing, SHI Aiye, et al. Improved density peaks clustering based on firefly algorithm[J]. International journal of bio-inspired computation, 2020, 15(1): 24–42.
[18] XU Xiao, DING Shifei, XU Hui, et al. A feasible density peaks clustering algorithm with a merging strategy[J]. Soft computing, 2019, 23(13): 5171–5183.
[19] YU Donghua, LIU Guojun, GUO Maozu, et al. Density peaks clustering based on weighted local density sequence and nearest neighbor assignment[J]. IEEE access, 2019, 7: 34301–34317.
[20] XU Lizhong, ZHAO Jia, YAO Zhanfeng, et al. Density peak clustering based on cumulative nearest neighbors degree and micro cluster merging[J]. Journal of signal processing systems, 2019, 91(10): 1219–1236.
[21] 赵嘉, 姚占峰, 吕莉, 等. 基于相互邻近度的密度峰值聚类算法[J]. 控制与决策, 2021, 36(3): 543–552
ZHAO Jia, YAO Zhanfeng, LYU Li, at el. Density peaks clustering based on mutual neighbor degree[J]. Control and decision, 2021, 36(3): 543–552
[22] DU Mingjing, DING Shifei, XU Xiao, et al. Density peaks clustering using geodesic distances[J]. International journal of machine learning and cybernetics, 2018, 9(8): 1335–1349.
[23] VINH N X, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance[J]. Journal of machine learning research, 2010, 11: 2837–2854.
[24] FOWLKES E B, MALLOWS C L. A method for comparing two hierarchical clusterings[J]. Journal of the American statistical association, 1983, 78(383): 553–569.
[25] LICHMAN M. UCI machine learning repository[EB/OL]. (2018-09-24)[2022-09-15].http://archive.ics.uci.edu/ml.
[26] SAMARIA F S, HARTER A C. Parameterisation of a stochastic model for human face identification[C]//Proceedings of 1994 IEEE Workshop on Applications of Computer Vision. Piscataway: IEEE, 2002: 138?142.
[27] 肖人彬. 面向复杂系统的群集智能[M]. 北京: 科学出版社, 2013.
[28] 肖人彬, 冯振辉, 王甲海. 群体智能的概念辨析与研究进展及应用分析[J]. 南昌工程学院学报, 2022, 41(1): 1–21
XIAO Renbin, FENG Zhenhui, WANG Jiahai. Collective intelligence: conception, research progresses and application analyses[J]. Journal of Nanchang Institute of Technology, 2022, 41(1): 1–21
[29] 肖人彬, 陈峙臻. 从群智能优化到群智能进化[J]. 南昌工程学院学报, 2023, 42(1): 1–10
XIAO Renbin, CHEN Zhizhen. From swarm intelligence optimization to swarm intelligence evolution[J]. Journal of Nanchang Institute of Technology, 2023, 42(1): 1–10
相似文献/References:
[1]刘秀梅,赵克勤.基于联系数的不确定空情意图识别[J].智能系统学报,2012,7(5):450.
 LIU Xiumei,ZHAO Keqin.Inference method on intention with uncertain aerial information based on the connection number[J].CAAI Transactions on Intelligent Systems,2012,7():450.
[2]尹宁,刘富,张玉.采用最小误差阈值分割算法的基因芯片图像分析[J].智能系统学报,2013,8(1):28.[doi:10.3969/j.issn.1673-4785.201207015]
 YIN Ning,LIU Fu,ZHANG Yu.Image analysis of gene chip using minimum error threshold segmentation algorithm[J].CAAI Transactions on Intelligent Systems,2013,8():28.[doi:10.3969/j.issn.1673-4785.201207015]
[3]卿铭,孙晓梅.一种新的聚类有效性函数:模糊划分的模糊熵[J].智能系统学报,2015,10(1):75.[doi:10.3969/j.issn.1673-4785.201410004]
 QING Ming,SUN Xiaomei.A new clustering effectiveness function: fuzzy entropy of fuzzy partition[J].CAAI Transactions on Intelligent Systems,2015,10():75.[doi:10.3969/j.issn.1673-4785.201410004]
[4]王德文,孙志伟.一种基于内存计算的电力用户聚类分析方法[J].智能系统学报,2015,10(4):569.[doi:10.3969/j.issn.1673-4785.201411011]
 WANG Dewen,SUN Zhiwei.A method for cluster analysis of electric power consumers based on in-memory computing[J].CAAI Transactions on Intelligent Systems,2015,10():569.[doi:10.3969/j.issn.1673-4785.201411011]
[5]张永库,尹灵雪,孙劲光.基于改进的遗传算法的模糊聚类算法[J].智能系统学报,2015,10(4):627.[doi:10.3969/j.issn.1673-4785.201503033]
 ZHANG Yongku,YIN Lingxue,SUN Jinguang.Fuzzy clustering algorithm based on the improved genetic algorithm[J].CAAI Transactions on Intelligent Systems,2015,10():627.[doi:10.3969/j.issn.1673-4785.201503033]
[6]郑婷婷,桑小双,马斌斌.犹豫模糊集的α-截集及其应用[J].智能系统学报,2017,12(3):362.[doi:10.11992/tis.201704026]
 ZHENG Tingting,SANG Xiaoshuang,MA Binbin.α-cut sets of hesitant fuzzy sets and their applications[J].CAAI Transactions on Intelligent Systems,2017,12():362.[doi:10.11992/tis.201704026]
[7]冯冰,李绍滋.中医脉诊信号的无监督聚类分析研究[J].智能系统学报,2018,13(4):564.[doi:10.11992/tis.201703030]
 FENG Bing,LI Shaozi.Unsupervised clustering analysis of human-pulse signal in traditional Chinese medicine[J].CAAI Transactions on Intelligent Systems,2018,13():564.[doi:10.11992/tis.201703030]
[8]赵晓晓,周治平.结合稀疏表示与约束传递的半监督谱聚类算法[J].智能系统学报,2018,13(5):855.[doi:10.11992/tis.201703013]
 ZHAO Xiaoxiao,ZHOU Zhiping.A semi-supervised spectral clustering algorithm combined with sparse representation and constraint propagation[J].CAAI Transactions on Intelligent Systems,2018,13():855.[doi:10.11992/tis.201703013]
[9]秦海菲,杜军平.酒店在线评论数据的特征挖掘[J].智能系统学报,2018,13(6):1006.[doi:10.11992/tis.201806016]
 QIN Haifei,DU Junping.Feature mining based on online hotel review[J].CAAI Transactions on Intelligent Systems,2018,13():1006.[doi:10.11992/tis.201806016]
[10]储德润,周治平.公理化模糊共享近邻自适应谱聚类算法[J].智能系统学报,2019,14(5):897.[doi:10.11992/tis.201810002]
 CHU Derun,ZHOU Zhiping.Shared nearest neighbor adaptive spectral clustering algorithm based on axiomatic fuzzy set theory[J].CAAI Transactions on Intelligent Systems,2019,14():897.[doi:10.11992/tis.201810002]

备注/Memo

收稿日期:2022-09-15。
基金项目:国家自然科学基金项目(52069014,61962036).
作者简介:赵嘉,教授,博士,主要研究方向为智能计算与计算智能、模式识别与大数据挖掘。主持国家自然科学基金项目2项。发表学术论文60余篇,出版专著1部。;马清,硕士研究生,主要研究方向为数据挖掘;肖人彬,教授,博士生导师,主要研究方向为群体智能、大规模个性化定制、复杂系统与复杂性科学。主持并承担国家自然科学基金项目11项,作为第一完成人获得教育部自然科学奖1项和湖北省自然科学奖及科技进步奖4项。发表学术论文300余篇,出版学术专著和教材10余部。
通讯作者:赵嘉.E-mail:zhaojia925@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com