[1]吴珺,董佳明,刘欣,等.注意力优化的轻量目标检测网络及应用[J].智能系统学报,2023,18(3):506-516.[doi:10.11992/tis.202206014]
WU Jun,DONG Jiaming,LIU Xin,et al.Lightweight object detection network and its application based on the attention optimization[J].CAAI Transactions on Intelligent Systems,2023,18(3):506-516.[doi:10.11992/tis.202206014]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第3期
页码:
506-516
栏目:
学术论文—机器感知与模式识别
出版日期:
2023-07-05
- Title:
-
Lightweight object detection network and its application based on the attention optimization
- 作者:
-
吴珺1,2, 董佳明1, 刘欣1, 王春枝1
-
1. 湖北工业大学 计算机学院, 湖北 武汉 430068;
2. 武汉理工大学 材料科学与工程学院, 湖北 武汉 430070
- Author(s):
-
WU Jun1,2, DONG Jiaming1, LIU Xin1, WANG Chunzhi1
-
1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China;
2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
-
- 关键词:
-
目标检测; 深度学习; 计算机视觉; 轻量化网络; 空间注意力; 通道注意力; 一阶目标检测网络; 损失函数
- Keywords:
-
object detection; deep learning; computer vision; lightweight network; coordinate attention; squeeze-and-excitation; one-stage object detection network; loss function
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202206014
- 摘要:
-
本文以轻量化改进YOLO网络为主要目标,选取具有代表性的(squeeze and excitation, SE)通道注意力模块和比较新颖的(coordinate attention, CA)空间注意力模块与YOLOv5s目标检测网络进行融合,提出新的轻量网络模型YOLOv5s-CCA (YOLOv5s-C3-coordinate attention)和YOLOv5s-CSE(YOLOv5s-C3-squeeze-and-excitation)。通过进一步探索,论证出SE和CA注意力模块在YOLOv5s目标检测网络中最优插入位置的策略,实验论证了在轻量化网络模型中CA优于SE注意力模块。本文所提出的YOLOv5s-CCA网络模型在PASCAL VOC 2012数据集和Global Wheat 2020数据集中实现了网络轻量化并且精度较原始网络有所提升;并证实了YOLOv5s-CCA具有一定的通用性和泛化性,为其在实际生产与生活中进行轻量化部署提供了可靠的数据支撑和一定参考价值。
- Abstract:
-
Taking the lightweight improved YOLO network as the main target, the new lightweight network models YOLOv5s-CCA (YOLOv5s-C3-coordinate attention) and YOLOv5s-CSE (YOLOv5s-C3-squeeze-and-excitation) are put forward in this paper by selecting the representative SE (squeeze-and-excitation) channel attention module and relatively novel CA (coordinate attention) spatial attention module to fuse with YOLOv5s object detection network. By further exploration, the strategy for the optimal insertion position of the SE and CA attention modules in YOLOv5s object detection network is demonstrated. The experiment proves that CA is superior to SE attention module in the lightweight network model. The YOLOv5s-CCA network model proposed in this paper realizes the goal of network lightweight in both PASCAL VOC 2012 and Global Wheat 2020 data sets, and its accuracy is improved compared with the original network. It is confirmed that YOLOv5s-CCA has certain universality and generalization, which provides reliable data support and certain reference value for its lightweight deployment in actual production and life.
备注/Memo
收稿日期:2022-06-08。
基金项目:国家自然科学基金项目(61602161, 61772180);湖北省重点研发项目(2020BAB01);湖北工业大学研究生基金项目(2021046).
作者简介:吴珺,副教授,博士,主要研究方向为深度学习及多模态数据分析、大数据分析及应用、智能方法优化。主持国家自然科学基金及湖北省自然科学基金;参与研发各类省部级项目5项,并发表学术论文16篇;董佳明,硕士研究生,主要研究方向为目标检测、大数据技术;刘欣,硕士研究生,主要研究方向为目标检测、智能方法
通讯作者:吴珺.E-mail:wujun@whut.edu.cn
更新日期/Last Update:
1900-01-01