[1]赵光华,杨焘,付冬梅.数据流形边界及其分布条件的增量式降维算法[J].智能系统学报,2023,18(5):975-983.[doi:10.11992/tis.202205007]
 ZHAO Guanghua,YANG Tao,FU Dongmei.Incremental dimensionality reduction algorithm based on data manifold boundaries and distribution state[J].CAAI Transactions on Intelligent Systems,2023,18(5):975-983.[doi:10.11992/tis.202205007]
点击复制

数据流形边界及其分布条件的增量式降维算法

参考文献/References:
[1] HUANG Likun, LU Jiwen, TAN Y P. Multi-manifold metric learning for face recognition based on image sets[J]. Journal of visual communication and image representation, 2014, 25(7): 1774-1783.
[2] 王莉军. 海量数据下的文本信息检索算法仿真分析[J]. 计算机仿真, 2016(4): 429-432
WANG Lijun. Simulation analysis of text Information retrieval algorithms under massive data[J]. Computer simulation, 2016(4): 429-432
[3] JIANG Quansheng, JIA Minping, HU Jianzhong, et al. Machinery fault diagnosis using supervised manifold learning[J]. Mechanical systems and signal processing, 2009, 23(7): 2301-2311.
[4] CHEN Zhenzhu, FU Anmin, DENG R H, et al. Secure and verifiable outsourced data dimension reduction on dynamic data[J]. Information sciences, 2021, 573: 182-193.
[5] IZENMAN A J. Introduction to manifold learning[J]. Wiley interdisciplinary reviews:computational statistics, 2012, 4(5): 439-446.
[6] BRO R, SMILDE A K. Principal component analysis[J]. Anal methods, 2014, 6(9): 2812-2831.
[7] TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
[8] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
[9] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural computation, 2003, 15(6): 1373-1396.
[10] ZHANG Zhenyue, ZHA Hongyuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. Journal of Shanghai University (english edition), 2004, 8(4): 406-424.
[11] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 2579-2605.
[12] MCINNES L, HEALY J, SAUL N, et al. UMAP: uniform manifold approximation and projection[J]. Journal of open source software, 2018, 3(29): 861.
[13] 张冀, 曹艺, 王亚茹, 等. VAE 和 Stack GAN的零样本图像分类方法[J]. 智能系统学报, 2021, 17(3): 593-601
ZHANG Ji, CAO Yi, WANG Yaru, et al. A zero sample image classification method combining VAE and Stack GAN[J]. CAAI transactions on intelligent systems, 2021, 17(3): 593-601
[14] 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络 GAN 的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332
WANG Kunfeng, GOU Chao, DUAN Yanjie, et al. Research progress and prospects of generative adversarial networks[J]. IEEE/CAA journal of automatica sinica (JAS), 2017, 43(3): 321-332
[15] LI Housen, JIANG Hao, BARRIO R, et al. Incremental manifold learning by spectral embedding methods[J]. Pattern recognition letters, 2011, 32(10): 1447-1455.
[16] BUCAK S S, GUNSEL B. Incremental subspace learning via non-negative matrix factorization[J]. Pattern recognition, 2009, 42(5): 788-797.
[17] ZHAO Zhong, FENG Guocan, ZHU Jiehua, et al. Manifold learning: Dimensionality reduction and high dimensional data reconstruction via dictionary learning[J]. Neurocomputing, 2016, 216: 268-285.
[18] KWAK N, CHOI C H. Input feature selection by mutual information based on Parzen window[J]. IEEE transactions on pattern analysis and machine intelligence, 2002, 24(12): 1667-1671.
[19] YANG Tao, FU Dongmei, MENG Jintao, et al. A manifold-based dimension reduction algorithm framework for noisy data using graph sampling and spectral graph[J]. Complexity, 2020, 2020: 1-18.
[20] MA Hehe, HU Yi, SHI Hongbo. Fault detection and identification based on the neighborhood standardized local outlier factor method[J]. Industrial & engineering chemistry research, 2013, 52(6): 2389-2402.
[21] ELEYAN A, DEMIREL H. Co-occurrence matrix and its statistical features as a new approach for face recognition[J]. Turkish journal of electrical engineering and computer sciences, 2011, 19(1): 97-107.
[22] YOON K. Convolutional Neural Networks for Sentence[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014: 1746-1751.
相似文献/References:
[1]钱进,朱亚炎.面向成组对象集的增量式属性约简算法[J].智能系统学报,2016,11(4):496.[doi:10.11992/tis.201606005]
 QIAN Jin,ZHU Yayan.An incremental attribute reduction algorithm for group objects[J].CAAI Transactions on Intelligent Systems,2016,11():496.[doi:10.11992/tis.201606005]
[2]孙海霞.基于对象变化的邻域决策粗糙集动态更新算法[J].智能系统学报,2021,16(4):746.[doi:10.11992/tis.202010028]
 SUN Haixia.Dynamic updating algorithm of neighborhood decision-theoretic rough set model based on object change[J].CAAI Transactions on Intelligent Systems,2021,16():746.[doi:10.11992/tis.202010028]
[3]陈宝国,邓明.基于对象更新的邻域多粒度粗糙集模型增量式算法[J].智能系统学报,2023,18(3):562.[doi:10.11992/tis.202112042]
 CHEN Baoguo,DENG Ming.An incremental algorithm for the neighborhood multi-granulation rough set model based on object update[J].CAAI Transactions on Intelligent Systems,2023,18():562.[doi:10.11992/tis.202112042]

备注/Memo

收稿日期:2022-5-12。
基金项目:国家自然科学基金项目(61903029);科技部-科技基础资源调查专项(2019FY101404);佛山市人民政府科技创新专项(BK20AE004).
作者简介:赵光华,硕士研究生,主要研究方向为基于流形学习的高维含噪数据的挖掘问题;杨焘,副教授,主要研究方向为基于流形理论的数据处理与分析。;付冬梅,教授,主要研究方向为智能数据分析、红外图像技术、人工免疫计算。获得省部级科研奖励4项、教学奖励2项。获各种发明专利和计算机软件著作权10余项,发表学术论文100余篇。
通讯作者:杨焘.E-mail:yangtao@ustb.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com