[1]李飞龙,和伟辉,刘立芳,等.结合CWT和LightweightNet的滚动轴承实时故障诊断方法[J].智能系统学报,2023,18(3):496-505.[doi:10.11992/tis.202204020]
LI Feilong,HE Weihui,LIU Lifang,et al.Real time fault diagnosis method of rolling bearing based on CWT and LightweightNet[J].CAAI Transactions on Intelligent Systems,2023,18(3):496-505.[doi:10.11992/tis.202204020]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第3期
页码:
496-505
栏目:
学术论文—机器感知与模式识别
出版日期:
2023-07-05
- Title:
-
Real time fault diagnosis method of rolling bearing based on CWT and LightweightNet
- 作者:
-
李飞龙1, 和伟辉2, 刘立芳1, 齐小刚3
-
1. 西安电子科技大学 计算机学院, 陕西 西安 710071;
2. 西安卫星测控中心, 陕西 西安 710049;
3. 西安电子科技大学 数学与统计学院, 陕西 西安 710071
- Author(s):
-
LI Feilong1, HE Weihui2, LIU Lifang1, QI Xiaogang3
-
1. School of Computer Science and Technology, Xidian University, Xi’an 710071, China;
2. Xi’an Satellite Control Center, Xi’an 710049, China;
3. School of Mathematics and Statistics, Xidian University, Xi’an 710071, China
-
- 关键词:
-
滚动轴承; 故障诊断; 连续小波变换; 时频域特征; 轻量级神经网络; 分组卷积; 通道混洗; 倒残差结构
- Keywords:
-
rolling bearing; fault diagnosis; continuous wavelet transform; time-frequency feature; lightweight neural network; group convolution; channel shuffle; inverted residual structure
- 分类号:
-
TP183
- DOI:
-
10.11992/tis.202204020
- 摘要:
-
针对普通的深度学习算法用于轴承故诊断分类时计算量大、消耗成本高的问题,提出一种结合连续小波变换和轻量级神经网络的滚动轴承实时故障诊断方法。首先,使用Morlet母小波函数对轴承振动加速度数据进行连续小波变换,提取出时频域特征并将一维信号转换成二维图片;然后,结合分组卷积、通道混洗、倒残差结构等轻量级神经网络设计元素设计一个轻量级卷积神经网络LightweightNet用于时频图片的故障分类,LightweightNet网络在保证具有足够特征提取能力的同时还具有轻量级特点。使用凯斯西储大学轴承故障数据集进行实验表明,本方法相比于其他使用经典轻量级神经网络的方法具有更少的参数、最高的准确率和更快的诊断速度,基本可以实现滚动轴承的实时故障诊断,且在内存消耗与模型存储占用空间方面远小于其他同类方法。
- Abstract:
-
In order to solve the problem of large computation and high cost when common deep learning algorithm is applied to bearing fault diagnosis and classification, a real-time rolling bearing fault diagnosis method combining continuous wavelet transform and lightweight neural network is proposed in this paper. Firstly, the Morlet mother wavelet function is used to carry out continuous wavelet transform on the bearing vibration acceleration data, extracting the time-frequency domain features and converting the one-dimensional signals into two-dimensional images. Then, LightweightNet, a lightweight convolutional neural network, is designed for time-frequency image fault classification by combining lightweight neural network design elements such as group convolution, channel shuffle and inverted residual structure. LightweightNet not only ensures sufficient feature extraction ability, but also has lightweight characteristics. The bearing failure experiment data sets from Case Western Reserve University show that, compared with other methods using classic lightweight neural network, this method has less parameters, the highest degree of accuracy and faster diagnosis speed, the real-time fault diagnosis of rolling bearing can be achieved basically, far less than other similar methods in memory consumption and model storage space.
备注/Memo
收稿日期:2022-04-12。
作者简介:李飞龙,硕士研究生,主要研究方向为数据处理与分析、装备故障诊断和故障预测;和伟辉,硕士研究生,主要研究方向为健康管理与故障诊断;刘立芳,教授,博士,主要研究方向为数据处理与智能计算。主持完成国家自然科学基金青年项目、预研领域基金项目等,参与十三五预研项目、教育部–中国移动联合基金项目、自主可控软件示范项目、企业重大技术攻关项目等十余项
通讯作者:刘立芳.E-mail:lfliu@mail.xidian.edu.cn
更新日期/Last Update:
1900-01-01