[1]闫河,李梦雪,张宇宁,等.面向表情识别的重影非对称残差注意力网络模型[J].智能系统学报,2023,18(2):333-340.[doi:10.11992/tis.202201003]
 YAN He,LI Mengxue,ZHANG Yuning,et al.A ghost asymmetric residual attention network model for facial expression recognition[J].CAAI Transactions on Intelligent Systems,2023,18(2):333-340.[doi:10.11992/tis.202201003]
点击复制

面向表情识别的重影非对称残差注意力网络模型

参考文献/References:
[1] 贲晛烨, 杨明强, 张鹏, 等. 微表情自动识别综述[J]. 计算机辅助设计与图形学学报, 2014, 26(9): 1385–1395
BEN Xianye, YANG Mingqiang, ZHANG Peng, et al. Survey on automatic micro expression recognition methods[J]. Journal of computer-aided design & computer graphics, 2014, 26(9): 1385–1395
[2] LI Shan, DENG Weihong. Deep facial expression recognition: a survey[J]. IEEE transactions on affective computing, 2022, 13(3): 1195–1215.
[3] WANG Kai, PENG Xiaojiang, YANG Jianfei, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6896?6905.
[4] RUAN Delian, YAN Yan, LAI Shenqi, et al. Feature decomposition and reconstruction learning for effective facial expression recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 7656?7665.
[5] 李勇, 林小竹, 蒋梦莹. 基于跨连接LeNet-5网络的面部表情识别[J]. 自动化学报, 2018, 44(1): 176–182
LI Yong, LIN Xiaozhu, JIANG Mengying. Facial expression recognition with cross-connect LeNet-5 network[J]. Acta automatica sinica, 2018, 44(1): 176–182
[6] 崔子越, 皮家甜, 陈勇, 等. 结合改进VGGNet和Focal Loss的人脸表情识别[J]. 计算机工程与应用, 2021, 57(19): 171–178
CUI Ziyue, PI Jiatian, CHEN Yong, et al. Facial expression recognition combined with improved VGGNet and focal loss[J]. Computer engineering and applications, 2021, 57(19): 171–178
[7] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[8] PHAM L, VU T H, TRAN T A. Facial expression recognition using residual masking network[C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2020: 4513?4519.
[9] 高涛, 杨朝晨, 陈婷, 等. 深度多尺度融合注意力残差人脸表情识别网络[J]. 智能系统学报, 2022, 17(2): 393–401
GAO Tao, YANG Zhaochen, CHEN Ting, et al. Deep multiscale fusion attention residual network for facial expression recognition[J]. CAAI transactions on intelligent systems, 2022, 17(2): 393–401
[10] 陈加敏, 徐杨. 注意力金字塔卷积残差网络的表情识别[J]. 计算机工程与应用, 2022, 58(22): 123–131
CHEN Jiamin, XU Yang. Expression Recognition Based on Convolution Residual Network of Attention Pyramid[J]. Computer engineering and applications, 2022, 58(22): 123–131
[11] DUTA I C, LIU LI, ZHU FAN, et al. Pyramidal convolution: rethinking convolutional neural networks for visual recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE, 2020.
[12] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510?4520.
[13] HAN Kai, WANG Yunhe, TIAN Qi, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577?1586.
[14] 刘超军, 段喜萍, 谢宝文. 应用GhostNet卷积特征的ECO目标跟踪算法改进[J]. 激光技术, 2022, 46(2): 239–247
LIU Chaojun, DUAN Xiping, XIE Baowen. Improvement of eco target tracking algorithm based on GhostNet convolution feature[J]. Laser technology, 2022, 46(2): 239–247
[15] 符惠桐, 王鹏, 李晓艳, 等. 面向移动目标识别的轻量化网络模型[J]. 西安交通大学学报, 2021, 55(7): 124–131
FU Huitong, WANG Peng, LI Xiaoyan, et al. Lightweight network model for moving object recognition[J]. Journal of Xi’an Jiaotong university, 2021, 55(7): 124–131
[16] WANG Fei, JIANG Mengqing, QIAN Chen, et al. Residual attention network for image classification[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6450?6458.
[17] MISRA D. Mish: a self regularized non-monotonic neural activation function[EB/OL]. (2020?08?13)[2021?01?01].https://arxiv.org/abs/1908.08681v1.
[18] HE Tong, ZHANG Zhi, ZHANG Hang, et al. Bag of tricks for image classification with convolutional neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 558?567.
[19] 崔珂璠, 熊淑华, 陈洪刚, 等. 基于非对称残差注意网络的目标跟踪算法[J]. 微电子学与计算机, 2021, 38(9): 8–16
CUI Kefan, XIONG Shuhua, CHEN Honggang, et al. An object tracking algorithm based on asymmetric residual attention network[J]. Microelectronics & computer, 2021, 38(9): 8–16
[20] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2818?2826.
[21] MINAEE S, MINAEI M, ABDOLRASHIDI A. Deep-emotion: facial expression recognition using attentional convolutional network[J]. Sensors, 2021, 21(9): 3046.
[22] SHI Cuiping, TAN Cong, WANG Liguo. A facial expression recognition method based on a multibranch cross-connection convolutional neural network[J]. IEEE access, 2021, 9: 39255–39274.
[23] JUNG H, LEE S, YIM J, et al. Joint fine-tuning in deep neural networks for facial expression recognition[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 2983?2991.
[24] YANG Huiyuan, CIFTCI U, YIN Lijun. Facial expression recognition by de-expression residue learning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2168?2177.
相似文献/References:
[1]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(1):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2():69.
[2]谭 营,朱元春.反垃圾电子邮件方法研究进展[J].智能系统学报,2010,5(3):189.
 TAN Ying,ZHU Yuan-chun.Advances in antispam techniques[J].CAAI Transactions on Intelligent Systems,2010,5():189.
[3]王斐,张育中,宁廷会,等.脑-机接口研究进展[J].智能系统学报,2011,6(3):189.
 WANG Fei,ZHANG Yuzhong,NING Tinghui,et al.Research progress in a braincomputer interface[J].CAAI Transactions on Intelligent Systems,2011,6():189.
[4]刘琚,孙建德.独立分量分析的图像/视频分析与应用[J].智能系统学报,2011,6(6):495.
 LIU Ju,SUN Jiande.Independent component analysisbased image/video analysis and applications[J].CAAI Transactions on Intelligent Systems,2011,6():495.
[5]谭营,王军.手指静脉身份识别技术最新进展[J].智能系统学报,2011,6(6):471.
 TAN Ying,WANG Jun.Recent advances in finger vein based biometric techniques[J].CAAI Transactions on Intelligent Systems,2011,6():471.
[6]吴家伟,严京旗,方志宏,等.基于图像显著性特征的铸坯表面缺陷检测[J].智能系统学报,2012,7(1):75.
 WU Jiawei,YAN Jingqi,FANG Zhihong,et al.Defect detection on a steel slab surface based on the characteristics of an image’s saliency region[J].CAAI Transactions on Intelligent Systems,2012,7():75.
[7]张毅,罗明伟,罗元.脑电信号的小波变换和样本熵特征提取方法[J].智能系统学报,2012,7(4):339.
 ZHANG Yi,LUO Mingwei,LUO Yuan.EEG feature extraction method based on wavelet transform and sample entropy[J].CAAI Transactions on Intelligent Systems,2012,7():339.
[8]刘忠宝,王士同.从Parzen窗核密度估计到特征提取方法:新的研究视角[J].智能系统学报,2012,7(6):471.
 LIU Zhongbao,WANG Shitong.From Parzen window estimation to feature extraction: a new perspective[J].CAAI Transactions on Intelligent Systems,2012,7():471.
[9]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(3):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8():189.
[10]许可乐,唐涛,蒋咏梅.一种SAR图像稳健特征点提取方法[J].智能系统学报,2013,8(4):287.[doi:10.3969/j.issn.1673-4785.201304038]
 XU Kele,TANG Tao,JIANG Yongmei.A stable feature point extraction approach for SAR image registration[J].CAAI Transactions on Intelligent Systems,2013,8():287.[doi:10.3969/j.issn.1673-4785.201304038]
[11]伍锡如,凌星雨.基于改进的Faster RCNN面部表情检测算法[J].智能系统学报,2021,16(2):210.[doi:10.11992/tis.201910020]
 WU Xiru,LING Xingyu.Facial expression recognition based on improved Faster RCNN[J].CAAI Transactions on Intelligent Systems,2021,16():210.[doi:10.11992/tis.201910020]

备注/Memo

收稿日期:2022-01-04。
基金项目:国家重点研发计划“智能机器人”重点专项(2018YFB1308602);国家自然科学基金面上项目(61173184);重庆市自然科学基金项目(cstc2018jcyjAX0694).
作者简介:闫河,教授,主要研究方向为小波分析、目标跟踪、计算机视觉与视觉测量。发表学术论文90余篇;李梦雪,硕士研究生,主要研究方向为计算机视觉、情感感知;张宇宁,硕士研究生,主要研究方向为计算机视觉、语音处理
通讯作者:闫河. E-mail:cqyanhe@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com