[1]杜艳玲,王丽丽,黄冬梅,等.融合密集特征金字塔的改进R2CNN海洋涡旋自动检测[J].智能系统学报,2023,18(2):341-351.[doi:10.11992/tis.202112019]
 DU Yanling,WANG Lili,HUANG Dongmei,et al.Improved R2CNN ocean eddy automatic detection with a dense feature pyramid[J].CAAI Transactions on Intelligent Systems,2023,18(2):341-351.[doi:10.11992/tis.202112019]
点击复制

融合密集特征金字塔的改进R2CNN海洋涡旋自动检测

参考文献/References:
[1] 张盟, 杨玉婷, 孙鑫, 等. 基于深度卷积网络的海洋涡旋检测模型[J]. 南京航空航天大学学报, 2020, 52(5): 708–713
ZHANG Meng, YANG Yuting, SUN Xin, et al. Ocean eddy detection model based on deep convolution neural network[J]. Journal of Nanjing University of aeronautics & astronautics, 2020, 52(5): 708–713
[2] 沈飙, 陈扬, 杨琛, 等. 海洋科学中尺度涡的计算机视觉检测和分析方法[J]. 数据与计算发展前沿, 2020, 2(6): 30–41
SHEN Biao, CHEN Yang, YANG Chen, et al. Computer vision detection and analysis of mesoscale eddies in marine science[J]. Frontiers of data & computing, 2020, 2(6): 30–41
[3] 董昌明, 蒋星亮, 徐广珺, 等. 海洋涡旋自动探测几何方法、涡旋数据库及其应用[J]. 海洋科学进展, 2017, 35(4): 439–453
DONG Changming, JIANG Xingliang, XU Guangjun, et al. Automated eddy detection using geometric approach, eddy datasets and their application[J]. Advances in marine science, 2017, 35(4): 439–453
[4] NENCIOLI F, DONG Changming, DICKEY T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight[J]. Journal of atmospheric and oceanic technology, 2010, 27(3): 564–579.
[5] CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in oceanography, 2011, 91(2): 167–216.
[6] ALPERS W, BRANDT P, LAZAR A, et al. A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data[J]. Remote sensing of environment, 2013, 129: 132–143.
[7] FAGHMOUS J H, CHAMBER Y, BORIAH S, et al. A novel and scalable spatio-temporal technique for ocean eddy monitoring[C]//AAAI’12: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. New York: ACM, 2012: 281?287.
[8] ASHKEZARI M D, HILL C N, FOLLETT C N, et al. Oceanic eddy detection and lifetime forecast using machine learning methods[J]. Geophysical research letters, 2016, 43(23): 12234–12241.
[9] KARIMOVA S. Spiral eddies in the Baltic, Black and Caspian Seas as seen by satellite radar data[J]. Advances in space research, 2012, 50(8): 1107–1124.
[10] ISERN-FONTANET J, GARCíA-LADONA E, FONT J. Identification of marine eddies from altimetric maps[J]. Journal of atmospheric and oceanic technology, 2003, 20(5): 772–778.
[11] YI J, DU Y, HE Z, et al. Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly[J]. Ocean science, 2014, 10(1): 39–48.
[12] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[13] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936?944.
[14] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999?3007.
[15] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[16] DUO Zijun, WANG Wenke, WANG Huizan. Oceanic mesoscale eddy detection method based on deep learning[J]. Remote sensing, 2019, 11(16): 1921.
[17] JIANG Yingying, ZHU Xiangyu, WANG Xiaobing, et al. R2CNN: rotational region CNN for orientation robust scene text detection[EB/OL]. (2017?06?30)[2020?01?01].https://arxiv.org/abs/1706.09579.
[18] YANG Xue, SUN Hao, FU K, et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote sens, 2018, 10: 132.
[19] SIMONYAN K , ? ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014?10?04)[2020?01?01].https://www.semanticscholar.org/paper/Very-Deep-Convolutional-Networks-for-Large-Scale-Simonyan-Zisserman/eb42cf88027de515750f230b23b1a057dc782108.
[20] 单志勇, 张鐘月. 基于改进Faster R-CNN算法的行人检测[J]. 现代计算机, 2021, 27(23): 124–128
SHAN Zhiyong, ZHANG Zhongyue. Pedestrian detection based on improved faster R-CNN algorithm[J]. Modern computer, 2021, 27(23): 124–128
[21] MA Jianqi, SHAO Weiyuan, YE Hao, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE transactions on multimedia, 2018, 20(11): 3111–3122.
[22] 戴媛, 易本顺, 肖进胜, 等. 基于改进旋转区域生成网络的遥感图像目标检测[J]. 光学学报, 2020, 40(1): 270–280
DAI Yuan, YI Benshun, XIAO Jinsheng, et al. Object detection of remote sensing image based on improved rotation region proposal network[J]. Acta optica sinica, 2020, 40(1): 270–280
[23] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580?587.
[24] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980?2988.
[25] 李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159–168
LI Guangshuai, SU Juan, LI Yihong. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of aeronautics and astronautics, 2021, 47(1): 159–168
相似文献/References:
[1]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报,2012,7(1):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7():61.
[2]韩峥,刘华平,黄文炳,等.基于Kinect的机械臂目标抓取[J].智能系统学报,2013,8(2):149.[doi:10.3969/j.issn.1673-4785.201212038]
 HAN Zheng,LIU Huaping,HUANG Wenbing,et al.Kinect-based object grasping by manipulator[J].CAAI Transactions on Intelligent Systems,2013,8():149.[doi:10.3969/j.issn.1673-4785.201212038]
[3]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[4]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[5]韩延彬,郭晓鹏,魏延文,等.RGB和HSI颜色空间的一种改进的阴影消除算法[J].智能系统学报,2015,10(5):769.[doi:10.11992/tis.201410010]
 HAN Yanbin,GUO Xiaopeng,WEI Yanwen,et al.An improved shadow removal algorithm based on RGB and HSI color spaces[J].CAAI Transactions on Intelligent Systems,2015,10():769.[doi:10.11992/tis.201410010]
[6]曾宪华,易荣辉,何姗姗.流形排序的交互式图像分割[J].智能系统学报,2016,11(1):117.[doi:10.11992/tis.201505037]
 ZENG Xianhua,YI Ronghui,HE Shanshan.Interactive image segmentation based on manifold ranking[J].CAAI Transactions on Intelligent Systems,2016,11():117.[doi:10.11992/tis.201505037]
[7]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[8]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[9]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[10]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[11]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[12]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[13]刘召,张黎明,耿美晓,等.基于改进的Faster R-CNN高压线缆目标检测方法[J].智能系统学报,2019,14(4):627.[doi:10.11992/tis.201905026]
 LIU Zhao,ZHANG Liming,GENG Meixiao,et al.Object detection of high-voltage cable based on improved Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2019,14():627.[doi:10.11992/tis.201905026]
[14]单义,杨金福,武随烁,等.基于跳跃连接金字塔模型的小目标检测[J].智能系统学报,2019,14(6):1144.[doi:10.11992/tis.201905041]
 SHAN Yi,YANG Jinfu,WU Suishuo,et al.Skip feature pyramid network with a global receptive field for small object detection[J].CAAI Transactions on Intelligent Systems,2019,14():1144.[doi:10.11992/tis.201905041]
[15]赵振兵,江爱雪,戚银城,等.嵌入遮挡关系模块的SSD模型的输电线路图像金具检测[J].智能系统学报,2020,15(4):656.[doi:10.11992/tis.202001008]
 ZHAO Zhenbing,JIANG Aixue,QI Yincheng,et al.Fittings detection in transmission line images with SSD model embedded occlusion relation module[J].CAAI Transactions on Intelligent Systems,2020,15():656.[doi:10.11992/tis.202001008]
[16]张新钰,邹镇洪,李志伟,等.面向自动驾驶目标检测的深度多模态融合技术[J].智能系统学报,2020,15(4):758.[doi:10.11992/tis.202002010]
 ZHANG Xinyu,ZOU Zhenhong,LI Zhiwei,et al.Deep multi-modal fusion in object detection for autonomous driving[J].CAAI Transactions on Intelligent Systems,2020,15():758.[doi:10.11992/tis.202002010]
[17]王照国,张红云,苗夺谦.基于F1值的非极大值抑制阈值自动选取方法[J].智能系统学报,2020,15(5):1006.[doi:10.11992/tis.202006056]
 WANG Zhaoguo,ZHANG Hongyun,MIAO Duoqian.Automatic selection method of non-maximum suppression threshold based on F1 score[J].CAAI Transactions on Intelligent Systems,2020,15():1006.[doi:10.11992/tis.202006056]
[18]伍锡如,凌星雨.基于改进的Faster RCNN面部表情检测算法[J].智能系统学报,2021,16(2):210.[doi:10.11992/tis.201910020]
 WU Xiru,LING Xingyu.Facial expression recognition based on improved Faster RCNN[J].CAAI Transactions on Intelligent Systems,2021,16():210.[doi:10.11992/tis.201910020]
[19]翟永杰,杨旭,赵振兵,等.融合共现推理的Faster R-CNN输电线路金具检测[J].智能系统学报,2021,16(2):237.[doi:10.11992/tis.202012023]
 ZHAI Yongjie,YANG Xu,ZHAO Zhenbing,et al.Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J].CAAI Transactions on Intelligent Systems,2021,16():237.[doi:10.11992/tis.202012023]
[20]洪恺临,曹江涛,姬晓飞.改进Center-Net网络的自主喷涂机器人室内窗户检测[J].智能系统学报,2021,16(3):425.[doi:10.11992/tis.202005016]
 HONG Kailin,CAO Jiangtao,JI Xiaofei.Indoor window detection of autonomous spraying robot based on improved CenterNet network[J].CAAI Transactions on Intelligent Systems,2021,16():425.[doi:10.11992/tis.202005016]

备注/Memo

收稿日期:2021-12-10。
基金项目:国家自然科学基金项目(41906179);上海市科委地方能力建设项目(20050501900).
作者简介:杜艳玲,讲师,主要研究方向为海洋中尺度涡自动检测与轨迹追踪。主持国家自然科学基金项目1项、中国博士后基金项目1项,以项目骨干参与省部级以上项目10余项。获"领跑者5000中国精品科技期刊顶尖学术论文",上海市科学技术奖等省部级以上奖励4项,申请专利9项。在国际顶级期刊和CCF推荐国际会议上发表学术论文5篇;王丽丽,硕士研究生,主要研究方向为目标检测、深度学习;贺琪,教授,上海海洋大学信息学院副院长,中国计算机学会(CCF)上海委员,中国海洋学会海洋信息专业委员会委员,主要研究方向为海洋大数据存储与分析、遥感影像分类与目标识别。曾获得上海市教学成果奖二等奖、上海海洋科学技术奖一等奖、上海市浦东新区科技进步一等奖等奖项。出版专著《海洋大数据》、《海洋信息技术与应用》等。发表学术论文40余篇。
通讯作者:贺琪. E-mail:qhe@shou.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com