[1]翟永杰,张智柏,王亚茹.基于改进TransGAN的零样本图像识别方法[J].智能系统学报,2023,18(2):352-359.[doi:10.11992/tis.202111002]
 ZHAI Yongjie,ZHANG Zhibai,WANG Yaru.An image recognition method of zero -shot learning based on an improved TransGAN[J].CAAI Transactions on Intelligent Systems,2023,18(2):352-359.[doi:10.11992/tis.202111002]
点击复制

基于改进TransGAN的零样本图像识别方法

参考文献/References:
[1] LAROCHELLE H, ERHAN D, BENGIO Y. Zero-data learning of new tasks[C]//AAAI’08: Proceedings of the 23rd national conference on Artificial intelligence - Volume 2. New York: ACM, 2008: 646?651.
[2] PALATUCCI M, POMERLEAU D, HINTON G, et al. Zero-shot learning with semantic output codes[C]//NIPS’09: Proceedings of the 22nd International Conference on Neural Information Processing Systems. New York: ACM, 2009: 1410?1418.
[3] XU Xing, SHEN Fumin, YANG Yang, et al. Matrix tri-factorization with manifold regularizations for zero-shot learning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2007?2016.
[4] LIU Mingxia, ZHANG Daoqiang, CHEN Songcan. Attribute relation learning for zero-shot classification[J]. Neurocomputing, 2014, 139: 34–46.
[5] 翟永杰, 吴童桐. 基于语义空间信息映射加强的零样本学习方法[J]. 计算机应用与软件, 2020, 37(12): 113–118,196
ZHAI Yongjie, WU Tongtong. Zero shot learning based on semantic spatial information mapping enhancement[J]. Computer applications and software, 2020, 37(12): 113–118,196
[6] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 951?958.
[7] ROMERA-PAREDES B, TORR P H S. An Embarrassingly Simple Approach to Zero-Shot Learning[M]// Visual Attributes. Cham: Springer, 2017: 11?30.
[8] QIAO Ruizhi, LIU Lingqiao, SHEN Chunhua, et al. Less is more: zero-shot learning from online textual documents with noise suppression[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2249?2257.
[9] FU Yanwei, HOSPEDALES T M, XIANG Tao, et al. Transductive multi-view zero-shot learning[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(11): 2332–2345.
[10] SHIGETO Y, SUZUKI I, HARA K, et al. Ridge regression, hubness, and zero-shot learning[M]//Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2015: 135?151.
[11] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014: 27.
[12] ZHU Y, ELHOSEINY M, LIU B, et al. A generative adversarial approach for zero-shot learning from noisy texts[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 1004?1013.
[13] CHEN Z, LI J, LUO Y, et al. Canzsl: Cycle-consistent adversarial networks for zero-shot learning from natural language[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Salt Lake City: IEEE, 2020: 874?883.
[14] JIANG YIFAN, CHANG SHIYU, WANG ZHANGYANG. TransGAN: two pure transformers can make one strong GAN, and that can scale up[EB/OL].(2021?02?04)[2021?10?31].https://arxiv.org/abs/2102.07074.
[15] 王正龙, 张保稳. 生成对抗网络研究综述[J]. 网络与信息安全学报, 2021, 7(4): 68–85
WANG Zhenglong, ZHANG Baowen. Survey of generative adversarial network[J]. Chinese journal of network and information security, 2021, 7(4): 68–85
[16] ADLER J, LUNZ S. Banach Wasserstein Gan[EB/OL].(2018?06?18)[2021?10?31].https://arxiv.org/abs/1806.06621.
[17] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL].(2020?10?22)[2021?10?31].https://arxiv.org/abs/2010.11929.
[18] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 770?778.
[19] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[EB/OL].(2017?12?25)[2020?02?02].https://arxiv.org/abs/1704.00028.
[20] XIAN Yongqin, LORENZ T, SCHIELE B, et al. Feature generating networks for zero-shot learning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5542?5551.
[21] NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C]//2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing. Bhubaneswar: IEEE, 2008: 722?729.
[22] WAH C, BRANSON S, WELINDER P, et al. The caltech-ucsd birds-200-2011 dataset[R]. California Institute of Technology, 2011.
[23] 刘靖祎, 史彩娟, 涂冬景, 等. 零样本图像分类综述[J]. 计算机科学与探索, 2021, 15(5): 812–824
LIU Jingyi, SHI Caijuan, TU Dongjing, et al. Survey of zero-shot image classification[J]. Journal of frontiers of computer science and technology, 2021, 15(5): 812–824
[24] ELHOSEINY M, SALEH B, ELGAMMAL A. Write a classifier: Zero-shot learning using purely textual descriptions[C]// Proceedings of the IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 2584?2591.
相似文献/References:
[1]朱文霖,刘华平,王博文,等.基于视-触跨模态感知的智能导盲系统[J].智能系统学报,2020,15(1):33.[doi:10.11992/tis.201908015]
 ZHU Wenlin,LIU Huaping,WANG Bowen,et al.An intelligent blind guidance system based on visual-touch cross-modal perception[J].CAAI Transactions on Intelligent Systems,2020,15():33.[doi:10.11992/tis.201908015]
[2]毕晓君,潘梦迪.基于生成对抗网络的机载遥感图像超分辨率重建[J].智能系统学报,2020,15(1):74.[doi:10.11992/tis.202002002]
 BI Xiaojun,PAN Mengdi.Super-resolution reconstruction of airborne remote sensing images based on the generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15():74.[doi:10.11992/tis.202002002]
[3]王昌安,田金文.生成对抗网络辅助学习的舰船目标精细识别[J].智能系统学报,2020,15(2):296.[doi:10.11992/tis.201901004]
 WANG Changan,TIAN Jinwen.Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15():296.[doi:10.11992/tis.201901004]
[4]张智,毕晓君.基于风格转换的无监督聚类行人重识别[J].智能系统学报,2021,16(1):48.[doi:10.11992/tis.202012014]
 ZHANG Zhi,BI Xiaojun.Clustering approach based on style transfer for unsupervised person re-identification[J].CAAI Transactions on Intelligent Systems,2021,16():48.[doi:10.11992/tis.202012014]
[5]姜义,吕荣镇,刘明珠,等.基于生成对抗网络的人脸口罩图像合成[J].智能系统学报,2021,16(6):1073.[doi:10.11992/tis.202012010]
 JIANG Yi,LYU Rongzhen,LIU Mingzhu,et al.Masked face image synthesis based on a generative adversarial network[J].CAAI Transactions on Intelligent Systems,2021,16():1073.[doi:10.11992/tis.202012010]
[6]刘万军,佟畅,曲海成.空洞卷积与注意力融合的对抗式图像阴影去除算法[J].智能系统学报,2021,16(6):1081.[doi:10.11992/tis.202011022]
 LIU Wanjun,TONG Chang,QU Haicheng.An antagonistic image shadow removal algorithm based on dilated convolution and attention mechanism[J].CAAI Transactions on Intelligent Systems,2021,16():1081.[doi:10.11992/tis.202011022]
[7]吴晓东,熊伟丽.采用编码输入的生成对抗网络故障检测方法及应用[J].智能系统学报,2022,17(3):496.[doi:10.11992/tis.202102003]
 WU Xiaodong,XIONG Weili.Fault detection method and its application using GAN with an encoded input[J].CAAI Transactions on Intelligent Systems,2022,17():496.[doi:10.11992/tis.202102003]
[8]严浙平,曲思瑜,邢文.水下图像增强方法研究综述[J].智能系统学报,2022,17(5):860.[doi:10.11992/tis.202108022]
 YAN Zheping,QU Siyu,XING Wen.An overview of underwater image enhancement methods[J].CAAI Transactions on Intelligent Systems,2022,17():860.[doi:10.11992/tis.202108022]
[9]陈斌,朱晋宁.双流增强融合网络微表情识别[J].智能系统学报,2023,18(2):360.[doi:10.11992/tis.202109036]
 CHEN Bin,ZHU Jinning.Micro-expression recognition based on a dual-stream enhanced fusion network[J].CAAI Transactions on Intelligent Systems,2023,18():360.[doi:10.11992/tis.202109036]
[10]卢娟,陈纯毅.融合递归自编解码器的蒙卡画面重构降噪方法[J].智能系统学报,2023,18(3):459.[doi:10.11992/tis.202112011]
 LU Juan,CHEN Chunyi.A denoised method by fusing recursive auto-encoder decorder for Monte Carlo rendering image reconstruction[J].CAAI Transactions on Intelligent Systems,2023,18():459.[doi:10.11992/tis.202112011]
[11]张冀,曹艺,王亚茹,等.融合VAE和StackGAN的零样本图像分类方法[J].智能系统学报,2022,17(3):593.[doi:10.11992/tis.202107012]
 ZHANG Ji,CAO Yi,WANG Yaru,et al.Zero-shot image classification method combining VAE and StackGAN[J].CAAI Transactions on Intelligent Systems,2022,17():593.[doi:10.11992/tis.202107012]

备注/Memo

收稿日期:2021-11-01。
基金项目:国家自然科学基金面上项目(U21A20486, 61871182);河北省自然科学基金青年科学基金项目(F2021502008);中央高校基本科研业务费专项资金面上项目(2021MS081).
作者简介:翟永杰,教授,博士,主要研究方向为电力视觉。主持国家自然科学基金面上项目1项,河北省自然科学基金项目1项,主持横向科研项目12项,参与国家重点研发计划项目1项,授权发明专利10项,获得山东省科技进步一等奖1项。编著1部,参编教材1部、著作3部,发表学术论文30余篇;张智柏,硕士研究生,主要研究方向为零样本学习与人工智能;王亚茹,讲师,博士,主要研究方向为模式识别与计算机视觉、数据挖掘、电力视觉。发表学术论文10余篇
通讯作者:王亚茹. E-mail:wangyaru@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com