[1]高涛,杨朝晨,陈婷,等.深度多尺度融合注意力残差人脸表情识别网络[J].智能系统学报,2022,17(2):393-401.[doi:10.11992/tis.202107028]
 GAO Tao,YANG Zhaochen,CHEN Ting,et al.Deep multiscale fusion attention residual network for facial expression recognition[J].CAAI Transactions on Intelligent Systems,2022,17(2):393-401.[doi:10.11992/tis.202107028]
点击复制

深度多尺度融合注意力残差人脸表情识别网络

参考文献/References:
[1] BEN Xianye, REN Yi, ZHANG Junping, et al. Video-based Facial micro-expression analysis: a survey of datasets, features and algorithms[EB/OL].(2021-03-19)[2021-05-01].https://arxiv.org/abs/2201.12728v1.
[2] CHEN Boyu, GUAN Wenlong, LI Peixia, et al. Residual multi-task learning for facial landmark localization and expression recognition[EB/OL].(2021-07-01)[2021-07-05].https://www.sciencedirect.com/science/article/pii/S0031320321000807.
[3] LI Shan, DENG Weihong. Deep facial expression recognition: a survey[EB/OL].(2020-03-17)[2021-05-01]. https://ieeexplore.ieee.org/document/9039580.
[4] ZHAO Guoying, PIETIKAINEN M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 915–928.
[5] WHITEHILL J, OMLIN C W. Haar features for FACS AU recognition[C]//Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Southampton, UK, 2006: 5?101.
[6] BARTLETT M S, LITTLEWORT G, FRANK M, et al. Recognizing facial expression: machine learning and application to spontaneous behavior[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005: 568?573.
[7] LI Xiaobai, PFISTER T, HUANG Xiaohua, et al. A spontaneous micro-expression database: inducement, collection and baseline[C]//2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). Shanghai, China, 2013: 1?6.
[8] RIVERA A R, CASTILLO J R, CHA E O O. Local directional number pattern for face analysis: face and expression recognition[J]. IEEE transactions on image processing, 2013, 22(5): 1740–1752.
[9] KIM T H, YU C, LEE S W. Facial expression recognition using feature additive pooling and progressive fine-tuning of CNN[J]. Electronics letters, 2018, 54(23): 1326–1328.
[10] AN Fengping, LIU Zhiwen. Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM[J]. The visual computer, 2020, 36(3): 483–498.
[11] XIE Siyue, HU Haifeng, WU Yongbo. Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition[J]. Pattern recognition, 2019, 92: 177–191.
[12] WANG Kai, PENG Xiaojiang, YANG Jianfei, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA, 2020: 6897?6906.
[13] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770?778.
[14] LI Yong, ZENG Jiabei, SHAN Shiguang, et al. Occlusion aware facial expression recognition using CNN with attention mechanism[J]. IEEE transactions on image processing, 2019, 28(5): 2439–2450.
[15] LIU Yuanyuan, YUAN Xiaohui, GONG Xi, et al. Conditional convolution neural network enhanced random forest for facial expression recognition[J]. Pattern recognition, 2018, 84: 251–261.
[16] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7132?7141.
[17] 江静, 邓伟洪. 持续学习改进的人脸表情识别[J]. 中国图象图形学报, 2020, 25(11): 2361–2369
JIANG Jing, DENG Weihong. Facial expression recognition improved by continual learning[J]. Journal of image and graphics, 2020, 25(11): 2361–2369
[18] 王善敏, 帅惠, 刘青山. 关键点深度特征驱动人脸表情识别[J]. 中国图象图形学报, 2020, 25(4): 813–823
WANG Shanmin, SHUAI Hui, LIU Qingshan. Facial expression recognition based on deep facial landmark features[J]. Journal of image and graphics, 2020, 25(4): 813–823
[19] 张文萍, 贾凯, 王宏玉, 等. 改进的Island损失函数在人脸表情识别上的应用[J]. 计算机辅助设计与图形学学报, 2020, 32(12): 1910–1917
ZHANG Wenping, JIA Kai, WANG Hongyu, et al. Application of improved Island loss in facial expression recognition[J]. Journal of computer-aided design & computer graphics, 2020, 32(12): 1910–1917
[20] LIU Xiaofeng, KUMAR B V K V, JIA Ping, et al. Hard negative generation for identity-disentangled facial expression recognition[J]. Pattern recognition, 2019, 88: 1–12.
[21] YANG Huiyuan, CIFTCI U, YIN Lijun. Facial expression recognition by de-expression residue learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018.
[22] XIE Siyue, HU Haifeng. Facial expression recognition using hierarchical features with deep comprehensive multipatches aggregation convolutional neural networks[J]. IEEE transactions on multimedia, 2019, 21(1): 211–220.
[23] LOPES A T, DE AGUIAR E, DE SOUZA A F, et al. Facial expression recognition with convolutional neural networks: coping with few data and the training sample order[J]. Pattern recognition, 2017, 61: 610–628.
[24] ZHANG Hepeng, HUANG Bin, TIAN Guohui. Facial expression recognition based on deep convolution long short-term memory networks of double-channel weighted mixture[J]. Pattern recognition letters, 2020, 131: 128–134.
[25] YANG Biao, CAO Jinmeng, NI Rongrong, et al. Facial expression recognition using weighted mixture deep neural network based on double-channel facial images[J]. IEEE access, 2017, 6: 4630–4640.
[26] KIM J H, KIM B G, ROY P P, et al. Efficient facial expression recognition algorithm based on hierarchical deep neural network structure[J]. IEEE access, 2019, 7: 41273–41285.
相似文献/References:
[1]孙正兴,徐文晖.基于局部SVM分类器的表情识别方法[J].智能系统学报,2008,3(5):455.
 SUN Zheng-xing,XU Wen-hui.Fac ial expression recogn ition based on local SVM classif iers[J].CAAI Transactions on Intelligent Systems,2008,3():455.
[2]彭程,刘帅师,万川,等.基于局部纹理ASM模型的人脸表情识别[J].智能系统学报,2011,6(3):231.
 PENG Cheng,LIU Shuaishi,WAN Chuan,et al.An active shape model for facial expression recognition based on a local texture model[J].CAAI Transactions on Intelligent Systems,2011,6():231.
[3]童莹.一种方向性的局部二值模式在人脸表情识别中的应用[J].智能系统学报,2015,10(3):422.[doi:10.3969/j.issn.1673-4785.201405016]
 TONG Ying.Local binary pattern based on the directions and its application in facial expression recognition[J].CAAI Transactions on Intelligent Systems,2015,10():422.[doi:10.3969/j.issn.1673-4785.201405016]
[4]曹锦纲,李金华,郑顾平.基于生成式对抗网络的道路交通模糊图像增强[J].智能系统学报,2020,15(3):491.[doi:10.11992/tis.201903041]
 CAO Jin gang,LI Jinhua,ZHENG Guping.Enhancement of blurred road-traffic images based on generative adversarial network[J].CAAI Transactions on Intelligent Systems,2020,15():491.[doi:10.11992/tis.201903041]
[5]林丽惠,罗志明,王军政,等.融合整体与局部信息的武夷岩茶叶片分类方法[J].智能系统学报,2020,15(5):919.[doi:10.11992/tis.202003018]
 LIN Lihui,LUO Zhiming,WANG Junzheng,et al.Classification of Wuyi rock tealeaves by integrating global and local information[J].CAAI Transactions on Intelligent Systems,2020,15():919.[doi:10.11992/tis.202003018]
[6]刘万军,佟畅,曲海成.空洞卷积与注意力融合的对抗式图像阴影去除算法[J].智能系统学报,2021,16(6):1081.[doi:10.11992/tis.202011022]
 LIU Wanjun,TONG Chang,QU Haicheng.An antagonistic image shadow removal algorithm based on dilated convolution and attention mechanism[J].CAAI Transactions on Intelligent Systems,2021,16():1081.[doi:10.11992/tis.202011022]
[7]张欣培,周尧,章毅.用于胎儿超声切面识别的知识蒸馏方法[J].智能系统学报,2022,17(1):181.[doi:10.11992/tis.202105007]
 ZHANG Xinpei,ZHOU Yao,ZHANG Yi.Knowledge distillation method for fetal ultrasound section identification[J].CAAI Transactions on Intelligent Systems,2022,17():181.[doi:10.11992/tis.202105007]
[8]李倩玉,王蓓,金晶,等.基于双向LSTM卷积网络与注意力机制的自动睡眠分期模型[J].智能系统学报,2022,17(3):523.[doi:10.11992/tis.202103013]
 LI Qianyu,WANG Bei,JIN Jing,et al.Automatic sleep staging model based on the bi-directional LSTM convolutional network and attention mechanism[J].CAAI Transactions on Intelligent Systems,2022,17():523.[doi:10.11992/tis.202103013]
[9]刘万军,赵思琪,曲海成,等.结合前景特征增强与区域掩码自注意力的细粒度图像分类[J].智能系统学报,2022,17(6):1134.[doi:10.11992/tis.202109029]
 LIU Wanjun,ZHAO Siqi,QU Haicheng,et al.Combining foreground feature reinforcement and region mask self-attention for fine-grained image classification[J].CAAI Transactions on Intelligent Systems,2022,17():1134.[doi:10.11992/tis.202109029]
[10]沈鑫,魏利胜.基于注意力残差U-Net的皮肤镜图像分割方法[J].智能系统学报,2023,18(4):699.[doi:10.11992/tis.202201030]
 SHEN Xin,WEI Lisheng.Dermoscope image segmentation method based on ARB-UNet[J].CAAI Transactions on Intelligent Systems,2023,18():699.[doi:10.11992/tis.202201030]
[11]梁艳,温兴,潘家辉.融合全局与局部特征的跨数据集表情识别方法[J].智能系统学报,2023,18(6):1205.[doi:10.11992/tis.202212030]
 LIANG Yan,WEN Xing,PAN Jiahui.Cross-dataset facial expression recognition method fusing global and local features[J].CAAI Transactions on Intelligent Systems,2023,18():1205.[doi:10.11992/tis.202212030]

备注/Memo

收稿日期:2021-07-16。
基金项目:国家重点研发计划项目(2019YFE0108300);国家自然科学基金项目(62001058);陕西省重点研发计划项目(2019GY-039);长安大学中央高校基本科研业务费专项资金项目(300102241201)
作者简介:高涛,教授,博士,主要研究方向为数字图像处理、模式识别。获得国家专利9项。发表学术论文16篇;杨朝晨,硕士研究生,主要研究方向为数字图像处理、深度学习;陈婷,副教授,博士,主要研究方向为图形图像处理、计算机视觉
通讯作者:陈婷.E-mail:tchenchd@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com