[1]马甜甜,杨长春,严鑫杰,等.融合知识图谱和轻量级图卷积网络推荐系统的研究[J].智能系统学报,2022,17(4):721-727.[doi:10.11992/tis.202107016]
 MA Tiantian,YANG Changchun,YAN Xinjie,et al.Research on the fusion of knowledge graph and lightweight graph convolutional network recommendation system[J].CAAI Transactions on Intelligent Systems,2022,17(4):721-727.[doi:10.11992/tis.202107016]
点击复制

融合知识图谱和轻量级图卷积网络推荐系统的研究

参考文献/References:
[1] COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. Boston Massachusetts USA. New York: ACM, 2016: 191?198.
[2] YING R, HE RUINING, CHEN KAIFENG, et al. Graph convolutional neural networks for web-scale recommender systems[EB/OL]. New York: arXiv, 2018. (2018?06?06)[2021?07?08].https://arxiv.org/abs/1806.01973.
[3] HE Xiangnan, HE Zhankui, SONG Jingkuan, et al. NAIS: neural attentive item similarity model for recommendation[J]. IEEE transactions on knowledge and data engineering, 2018, 30(12): 2354–2366.
[4] YUAN Fajie, HE Xiangnan, ALEXANDROS Karatzoglou, et al. Parameter-efficient transfer from sequential behaviors for user modeling and recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1469?1478.
[5] He Xiangnan, LIAO Lizi, ZHAGN Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173?182.
[6] 徐海文, 谭台哲. 基于知识图谱的个性化推荐系统构建[J]. 数字技术与应用, 2022, 40(3): 152?154,164.
[7] 汪滢. 基于区块链技术的旅游产品个性化推荐系统[J]. 数字通信世界, 2022(3): 41–43.
WANG Ying. Personalized recommendation system of tourism products based on blockchain technology[J]. Digital communication world, 2022(3): 41–43.
[8] 王越群. 基于知识图谱的深度推荐系统研究[D]. 长春: 吉林大学, 2022.
WANG Yuequn. Research on deep recommendation system based on knowledge graph[D]. Changchun: Jilin university, 2022.
[9] RENDLE S, GANTNER Z, FREUDENTHALER C, et al. Fast context-aware recommendations with factorization machines[C]//Proceedings of the 34th international ACM SIGIR conference on Research and development in Information—SIGIR’11. New York: ACM Press, 2011: 635?644.
[10] CHENG Heng-Tze, LEVENT Koc, JEREMIAH Harmsen, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st workshop on deep learning for recommender systems. New York: ACM, 201: 7?10.
[11] HE XIANGNAN, CHUA T S. Neural factorization machines for sparse predictive analytics[EB/OL]. New York: arXiv, 2017. (2017?08?16)[2021?07?01].https://arxiv.org/abs/1708.05027.
[12] GUO HUIFENG, TANG RUIMING, YE YUNMING, et al. DeepFM: a factorization-machine based neural network for CTR prediction[EB/OL]. New York: arXiv, 2017. (2017?03?13)[2021?07?01].https://arxiv.org/abs/1703.04247.
[13] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. New York: arXiv, 2016. (2016?09?09) [2021?07?01].https://arxiv.org/abs/1609.02907.
[14] WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural graph collaborative filtering[EB/OL]. (2019?03?20)[2021?07?01].https://www.semanticscholar.org/paper/Neural-Graph-Collaborative-Filtering-Wang-He.
[15] WANG Hongwei, ZHAO Miao, XIE Xing, et al. Knowledge graph convolutional networks for recommender systems[C]//The World Wide Web Conference on - WWW’19. New York: ACM Press, 2019: 3307?3313.
[16] JI Shaoxiong, PAN Shirui, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE transactions on neural networks and learning systems, 2022, 33(2): 494–514.
[17] WANG Hongwei, ZHANG Fuzheng, ZHANG Mengdi, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2019.
[18] GUAN Saiping, JIN Xiaolong, WANG Yuanzhuo, et al. Shared embedding based neural networks for knowledge graph completion[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 247?256.
[19] WANG Hongwei, ZHANG Fuzheng, WANG Jialin, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417?426.
[20] WANG Xiang, HE Xiangnan, CAO Yixin, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 950?958.
相似文献/References:
[1]崔婉秋,杜军平,周南,等.基于用户意图理解的社交网络跨媒体搜索与挖掘[J].智能系统学报,2017,12(6):761.[doi:10.11992/tis.201706075]
 CUI Wanqiu,DU Junping,ZHOU Nan,et al.Social network cross-media searching and mining based on user intention[J].CAAI Transactions on Intelligent Systems,2017,12():761.[doi:10.11992/tis.201706075]
[2]常亮,张伟涛,古天龙,等.知识图谱的推荐系统综述[J].智能系统学报,2019,14(2):207.[doi:10.11992/tis.201805001]
 CHANG Liang,ZHANG Weitao,GU Tianlong,et al.Review of recommendation systems based on knowledge graph[J].CAAI Transactions on Intelligent Systems,2019,14():207.[doi:10.11992/tis.201805001]
[3]贾中浩,古天龙,宾辰忠,等.旅游知识图谱特征学习的景点推荐[J].智能系统学报,2019,14(3):430.[doi:10.11992/tis.201810032]
 JIA Zhonghao,GU Tianlong,BIN Chenzhong,et al.Tourism knowledge-graph feature learning for attraction recommendations[J].CAAI Transactions on Intelligent Systems,2019,14():430.[doi:10.11992/tis.201810032]
[4]王坤,谢振平,陈梅婕.基于图约简的知识联想关系网络建模[J].智能系统学报,2019,14(4):679.[doi:10.11992/tis.201808009]
 WANG Kun,XIE Zhenping,CHEN Meijie.Modeling knowledge network on associative relations based on graph reduction[J].CAAI Transactions on Intelligent Systems,2019,14():679.[doi:10.11992/tis.201808009]
[5]秦娅,申国伟,余红星.基于Hadoop的大规模网络安全实体识别方法[J].智能系统学报,2019,14(5):1017.[doi:10.11992/tis.201809024]
 QIN Ya,SHEN Guowei,YU Hongxing.Large-scale network security entity recognition method based on Hadoop[J].CAAI Transactions on Intelligent Systems,2019,14():1017.[doi:10.11992/tis.201809024]
[6]张蕾,钱峰,赵姝,等.基于多粒度结构的网络表示学习[J].智能系统学报,2019,14(6):1233.[doi:10.11992/tis.201905045]
 ZHANG Lei,QIAN Feng,ZHAO Shu,et al.Network representation learning based on multi-granularity structure[J].CAAI Transactions on Intelligent Systems,2019,14():1233.[doi:10.11992/tis.201905045]
[7]饶官军,古天龙,常亮,等.基于相似性负采样的知识图谱嵌入[J].智能系统学报,2020,15(2):218.[doi:10.11992/tis.201811022]
 RAO Guanjun,GU Tianlong,CHANG Liang,et al.Knowledge graph embedding based on similarity negative sampling[J].CAAI Transactions on Intelligent Systems,2020,15():218.[doi:10.11992/tis.201811022]
[8]贾中浩,宾辰忠,古天龙,等.基于知识图谱和用户长短期偏好的个性化景点推荐[J].智能系统学报,2020,15(5):990.[doi:10.11992/tis.201904064]
 JIA Zhonghao,BIN Chenzhong,GU Tianlong,et al.Personalized attraction recommendation based on the knowledge graph and users’ long-term and short-term preferences[J].CAAI Transactions on Intelligent Systems,2020,15():990.[doi:10.11992/tis.201904064]
[9]陈新元,谢晟祎,陈庆强,等.结合卷积特征提取和路径语义的知识推理[J].智能系统学报,2021,16(4):729.[doi:10.11992/tis.202008007]
 CHEN Xinyuan,XIE Shengyi,CHEN Qingqiang,et al.Knowledge-based inference on convolutional feature extraction and path semantics[J].CAAI Transactions on Intelligent Systems,2021,16():729.[doi:10.11992/tis.202008007]
[10]罗玲,李硕凯,何清,等.基于知识图谱、TF-IDF和BERT模型的冬奥知识问答系统[J].智能系统学报,2021,16(4):819.[doi:10.11992/tis.202105047]
 LUO Ling,LI Shuokai,HE Qing,et al.Winter Olympic Q & A system based on knowledge map, TF-IDF and BERT model[J].CAAI Transactions on Intelligent Systems,2021,16():819.[doi:10.11992/tis.202105047]

备注/Memo

收稿日期:2021-07-08。
基金项目:国家自然科学基金项目(51877013); 江苏省研究生科研创新基金项目(KYCX21_2842).
作者简介:马甜甜,硕士研究生,主要研究方向为数据挖掘、推荐系统;杨长春,教授,主要研究方向为数据库系统与数据挖掘。发表学术论文50余篇;严鑫杰,硕士研究生,主要研究方向为数据挖掘、命名实体识别。
通讯作者:杨长春. E-mail:ycc@cczu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com