[1]赵嘉,陈丹丹,肖人彬,等.一种基于最大最小策略和非均匀变异的萤火虫算法[J].智能系统学报,2022,17(1):116-130.[doi:10.11992/tis.202106018]
ZHAO Jia,CHEN Dandan,XIAO Renbin,et al.A heterogeneous variation firefly algorithm with maximin strategy[J].CAAI Transactions on Intelligent Systems,2022,17(1):116-130.[doi:10.11992/tis.202106018]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第1期
页码:
116-130
栏目:
学术论文—人工智能基础
出版日期:
2022-01-05
- Title:
-
A heterogeneous variation firefly algorithm with maximin strategy
- 作者:
-
赵嘉1, 陈丹丹1, 肖人彬2, 樊棠怀1
-
1. 南昌工程学院 信息工程学院, 江西 南昌 330099;
2. 华中科技大学 人工智能与自动化学院, 湖北 武汉 430074
- Author(s):
-
ZHAO Jia1, CHEN Dandan1, XIAO Renbin2, FAN Tanghuai1
-
1. School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China;
2. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
-
- 关键词:
-
萤火虫算法; 多目标优化; Pareto 最优; Maximin 策略; 非均匀变异; 勘探; 收敛性; 多样性
- Keywords:
-
firefly algorithm; multi-objective optimization; Pareto optimality; Maximin strategy; heterogeneous variation; exploration; convergence; diversity
- 分类号:
-
TP242
- DOI:
-
10.11992/tis.202106018
- 摘要:
-
针对多目标萤火虫算法勘探能力弱、求解精度差的问题,本文提出了一种基于最大最小策略和非均匀变异的萤火虫算法(HVFA-M)。该算法首先引入Maximin策略,实现对外部档案的动态调整和对精英解的随机选择;其次,精英解结合当前最好解共同引导萤火虫进行全局搜索以扩大算法的搜索范围,提高算法的勘探能力,从而增加找寻全局最优解的概率;最后,在算法全面勘探的基础上,添加非均匀变异算子使得算法融合局部搜索的思想引导种群进行局部开采,进一步增强算法的寻优能力。将HVFA-M 与经典及新近多目标进化算法进行比较,实验结果表明:HVFA-M 能有效提升算法的勘探能力,在解的收敛性和多样性也表现出良好的性能。
- Abstract:
-
Aiming at weak exploration ability and poor solving accuracy of multi-objective firefly algorithms, a heterogeneous variation firefly algorithm with maximin strategy (HVFA-M) is proposed in this paper. Firstly, the Maximin strategy is introduced to realize dynamic adjustment of external archive and random selection of elite solutions; Secondly, the elite solutions guide the firefly global search together with the current best solution to expand the search range and improve the exploration ability of the algorithm, so as to increase the probability of finding the global optimal solution; Finally, on the basis of comprehensive exploration of the algorithm, the heterogeneous variation operator is added to make the algorithm integrate the idea of local search to guide the population to carry out local mining, so as to further enhance the optimization ability of the algorithm. By comparing HVFA-M with the classical and recent multi-objective evolutionary algorithms, the experimental results show that HVFA-M can effectively improve the exploration ability of the algorithm, and also shows good performance in the convergence and diversity of solutions.
备注/Memo
收稿日期:2021-06-11。
基金项目:科技创新2030—“新一代人工智能”重大项目(2018AAA0101200); 国家自然科学基金项目(52069014,51669014); 江西省杰出青年基金项目(2018ACB21029).
作者简介:赵嘉,教授,主要研究方向为智能计算、模式识别、大数据分析;陈丹丹,硕士研究生,主要研究方向为智能计算;肖人彬,教授,博士生导师,主要研究方向为群智能、涌现计算、复杂系统建模与仿真。主持国家级项目多项,获得教育部、湖北省自然科学奖和科学进步奖5项。发表学术论文200余篇,入选Elsevier“中国高被引学者”榜单。
通讯作者:肖人彬. E-mail:rbxiao@hust.edu.cn
更新日期/Last Update:
1900-01-01