[1]宋思雨,苗夺谦.基于多粒度空间混乱的细粒度图像分类算法[J].智能系统学报,2022,17(1):144-150.[doi:10.11992/tis.202105040]
SONG Siyu,MIAO Duoqian.Fine-grained image classification algorithm based on multi-granularity regions shuffle[J].CAAI Transactions on Intelligent Systems,2022,17(1):144-150.[doi:10.11992/tis.202105040]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第1期
页码:
144-150
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2022-01-05
- Title:
-
Fine-grained image classification algorithm based on multi-granularity regions shuffle
- 作者:
-
宋思雨1, 苗夺谦1,2
-
1. 同济大学 电子与信息工程学院, 上海 201804;
2. 同济大学 嵌入式系统与服务计算教育部重点实验室, 上海 201804
- Author(s):
-
SONG Siyu1, MIAO Duoqian1,2
-
1. College of Computer Science and Technology, Tongji University, Shanghai 201804, China;
2. Key Laboratory of Embedded System and Service Computing Ministry of Education, Tongji University, Shanghai 201804, China
-
- 关键词:
-
细粒度图像分类; 空间混乱; 多粒度; 深度学习; 数据增强; 卷积神经网络; 弱监督学习; 局部区域
- Keywords:
-
fine-grained image classification; regions shuffle; multi-granularity; deep learning; data augmentation; convolutional neural network; weakly-supervised learning; local areas
- 分类号:
-
TP183
- DOI:
-
10.11992/tis.202105040
- 摘要:
-
细粒度图像分类是计算机视觉领域一个具有挑战性的任务,在实际场景中具有很高的应用价值。其中不同子类别的物体整体轮廓差异较小,微小的判别性局部区域是分类的关键。然而,这些重要的局部区域的尺度可能不同, 不能用单一的标准去衡量它们。为了解决这个问题,本文提出了多粒度空间混乱模块来帮助神经网络学习如何寻找到不同尺度的判别性细节。该模块首先将图片划分为不同粒度的局部区域,然后随机打乱并重组构成新的输入图片。经过处理的图片具有区域无关性,从而迫使网络更好地在不同粒度层次下寻找有判别力的局部区域并从中学习特征。在3个广泛使用的细粒度图像分类数据集上的实验证明本文提出的模块可以有效地帮助网络寻找判别性局部区域从而提升了准确率并且网络不需要图片的任何部位标注信息。
- Abstract:
-
Fine-grained image classification is a challenging task of computer vision due to the high application value in many reality scenes, having high value in actual application scenarios. The differences in the overall outline of objects from different sub-categories are slight, and the delicate, discriminative local regions are the key to improve the classification accuracy. However, these essential local areas may have different scales, which cannot be measured by a single criterion. Therefore, a multi-granularity regions shuffle module is proposed to help the neural network learn how to find discriminative details for different scales. The module would first divide the image into local areas with different granularity, and then these regions will be shuffled and reorganized to form a new image, which will also be inputted to the network. The irrelevance among regions of the new image forces the network to find discriminative local regions under different granularity and learn from regions. Experimental results of three datasets widely used as benchmarks in fine-grained image classification show that the proposed module can effectively help the network find discriminative local regions and achieve excellent performance with no additional information required to be marked on any part of the image.
备注/Memo
收稿日期:2021-05-26。
基金项目:国家自然科学基金项目(61976158,61976160,62076182).
作者简介:宋思雨,硕士研究生,主要研究方向为计算机视觉、深度学习和粒计算;苗夺谦,教授,博士生导师,国际粗糙集学会副理事长、ACM 上海分会学术委员会委员、中国人工智能学会粒计算与知识发现专委会主任,主要研究方向为机器学习、粗糙集、人工智能和粒计算。主持国家自然科学基金项目6项。发表学术论文200余篇, 出版教材及著作21部。
通讯作者:苗夺谦. E-mail:dqmiao@tongji.edu.cn
更新日期/Last Update:
1900-01-01