[1]周士琪,王耀南,钟杭.融合视觉显著性再检测的孪生网络无人机目标跟踪算法[J].智能系统学报,2021,16(3):584-594.[doi:10.11992/tis.202101035]
ZHOU Shiqi,WANG Yaonan,ZHONG Hang.Siamese network combined with visual saliency re-detection for UAV object tracking[J].CAAI Transactions on Intelligent Systems,2021,16(3):584-594.[doi:10.11992/tis.202101035]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第3期
页码:
584-594
栏目:
人工智能院长论坛
出版日期:
2021-05-05
- Title:
-
Siamese network combined with visual saliency re-detection for UAV object tracking
- 作者:
-
周士琪1,2, 王耀南1,2, 钟杭1,2
-
1. 湖南大学 电气与信息工程学院,湖南 长沙 410082;
2. 湖南大学 机器人视觉感知与控制技术国家工程实验室,湖南 长沙 410082
- Author(s):
-
ZHOU Shiqi1,2, WANG Yaonan1,2, ZHONG Hang1,2
-
1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China;
2. National Engineering Laboratory for Robot Vision Perception and Control Technology, Hunan University, Changsha 410082, China
-
- 关键词:
-
无人机; 计算机视觉; 目标跟踪; 轻量化网络; 孪生网络; 显著性检测; 目标遮挡; 特征融合
- Keywords:
-
drone; computer vision; object tracking; MobileNetV2; siamese network; saliency detection; target occlusion; feature fusion
- 分类号:
-
TP242
- DOI:
-
10.11992/tis.202101035
- 摘要:
-
针对旋翼飞行器在跟踪过程中目标尺度变化、快速运动、视角变化等问题,本文提出了一种基于MobileNetV2的孪生网络目标跟踪算法,可在无人机机载处理器上实时运行。该算法主要包含目标得分估计模块与目标尺度估计模块两个部分。结合多特征融合的策略,可准确预测出目标位置与目标框IoU,同时以目标框IoU为指导,利用梯度上升法对目标框进行迭代修正,进一步提升预测精度。针对完全遮挡而导致的目标跟丢问题,本文设计了一个基于视觉显著性的目标再检测算法,该算法可实时高效地预测出图像的显著性区域,以指导对目标的再检测,进而恢复跟踪。最后,通过标准无人机跟踪数据集测试与实际无人机跟踪实验,验证了算法的可行性。
- Abstract:
-
Considering the problems associated with rotorcraft trackings, such as target scale variation, fast motion, and viewpoint change, this paper proposes a siamese network-based target tracking algorithm using MobileNetV2, which can run in real-time on an onboard UAV processor. The algorithm consists of target score and scale estimation modules. Combined with the multifeature fusion strategy, the target position and target box IoU were accurately predicted. At the same time, by employing the IoU, the gradient ascent method was used to iteratively modify the target bounding box to further improve the prediction accuracy. In addition, to solve the problem of target loss caused by full occlusion, a re-detection algorithm based on visual saliency detection was developed, which efficiently predicted the saliency map of the image in real-time to guide the re-detection of the target and resume tracking. Finally, the feasibility of the algorithm was verified by comparing the standard UAV tracking dataset and the actual UAV tracking experiment.
更新日期/Last Update:
2021-06-25