[1]张礼,马越,吴东洋.多条件多样本RNA-Seq数据的剪切异构体表达水平估计[J].智能系统学报,2021,16(6):1126-1135.[doi:10.11992/tis.202101028]
 ZHANG Li,MA Yue,WU Dongyang.Estimation of transcription variant expression level based on multi-condition multi-sample RNA-Seq data[J].CAAI Transactions on Intelligent Systems,2021,16(6):1126-1135.[doi:10.11992/tis.202101028]
点击复制

多条件多样本RNA-Seq数据的剪切异构体表达水平估计

参考文献/References:
[1] MARIONI J C, MASON C E, MANE S M, et al. RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays[J]. Genome research, 2008, 18(9): 1509-1517.
[2] 周晓光, 任鲁风, 李运涛, 等. 下一代测序技术: 技术回顾与展望[J]. 中国科学: 生命科学, 2010, 40(1): 23-37
ZHOU Xiaoguang, REN Lufeng, LI Yuntao, et al. The next-generation sequencing technology: A technology review and future perspective[J]. Scientia sinica (vitae), 2010, 40(1): 23-37
[3] 王曦, 汪小我, 王立坤, 等. 新一代高通量RNA测序数据的处理与分析[J]. 生物化学与生物物理进展, 2010, 37(8): 834-846
WANG Xi, WANG Xiaowo, WANG Likun, et al. A review on the processing and analysis of next-generation RNA-seq data[J]. Progress in biochemistry and biophysics, 2010, 37(8): 834-846
[4] ZHANG Li, LIU Xuejun. A comprehensive review on RNA-Seq data analysis[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33(3): 339-361.
[5] MONIER B, MCDERMAID A, WANG Cankun, et al. RIS-EDA: an integrated RNA-Seq interpretation system for gene expression data analysis[J]. PLoS computational biology, 2019, 15(2): e1006792.
[6] 王凯莉, 张礼, 刘学军. 融合多平台表达数据的转录组差异表达分析[J]. 计算机学报, 2018, 41(6): 1415-1430
WANG Kaili, ZHANG Li, LIU Xuejun. Differential expression analysis based on integrating transcriptome expression data from multiple platforms[J]. Chinese journal of computers, 2018, 41(6): 1415-1430
[7] 王凯莉, 张礼, 刘学军. 多实验平台下基因及异构体表达分析综述[J]. 中国生物医学工程学报, 2017, 36(2): 211-218
WANG Kaili, ZHANG Li, LIU Xuejun. A review of gene and isoform expression analysis across multiple experimental platforms[J]. Chinese journal of biomedical engineering, 2017, 36(2): 211-218
[8] JIANG Hui, WONG W H. Statistical inferences for isoform expression in RNA-Seq[J]. Bioinformatics, 2009, 25(8): 1026-1032.
[9] WU Zhengpeng, WANG Xi, ZHANG Xuegong. Using non-uniform read distribution models to improve isoform expression inference in RNA-Seq[J]. Bioinformatics, 2011, 27(4): 502-508.
[10] HU Ming, ZHU Yu, TAYLOR J M G, et al. Using poisson mixed-effects model to quantify transcript-level gene expression in RNA-Seq[J]. Bioinformatics, 2012, 28(1): 63-68.
[11] TRAPNELL C, WILLIAMS B A, PERTEA G, et. al Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature biotechnology, 2010, 28(5): 511-515.
[12] GLAUS P, HONKELA A, RATTRAY M. Identifying differentially expressed transcripts from RNA-Seq data with biological variation[J]. Bioinformatics, 2012, 28(13): 1721-1728.
[13] ZHANG Li, LIU Xuejun. PBSeq: modeling base-level bias to estimate gene and isoform expression for RNA-Seq data[J]. International journal of machine learning and cybernetics, 2017, 8(4): 1247-1258.
[14] LI Bo, DEWEY C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC bioinformatics, 2011, 12: 323.
[15] LI W V, LI J J. Modeling and analysis of RNA-seq data: a review from a statistical perspective[J]. Quantitative biology, 2018, 6(3): 195-209.
[16] LIU Siyun, JIANG Yuan, TAO Yu. Modelling RNA‐Seq data with a zero-inflated mixture Poisson linear model[J]. Genetic epidemiology, 2019, 43(7): 786-799.
[17] ZHANG Chi, ZHANG Baohong, LIN L L, et al. Evaluation and comparison of computational tools for RNA-Seq isoform quantification[J]. BMC genomics, 2017, 18(1): 1-11.
[18] LI Song, SABUNCIYAN S, YANG Guangyu, et al. A multi-sample approach increases the accuracy of transcript assembly[J]. Nature communications, 2019, 10(1): 1-7.
[19] SUO Chen, CALZA S, SALIM A, et al. Joint estimation of isoform expression and isoform-specific read distribution using multisample RNA-Seq data[J]. Bioinformatics, 2014, 30(4): 506-513.
[20] LI W V, ZHAO Anqi, ZHANG Shihua, et al. MSIQ: joint modeling of multiple RNA-Seq samples for accurate isoform quantification[J]. The annals of applied statistics, 2018, 12(1): 510-539.
[21] DENG Wenjiang, MOU Tian, KALARI K R, et al. Alternating EM algorithm for a bilinear model in isoform quantification from RNA-Seq data[J]. Bioinformatics, 2020, 36(3): 805-812.
[22] AGUIAR D, CHENG Lifang, DUMITRASCU B, et al. Bayesian nonparametric discovery of isoforms and individual specific quantification[J]. Nature communications, 2018, 9(1): 1-12.
[23] LIU Xuejun, ZHANG Li, CHEN Songcan. Modeling exon-specific bias distribution improves the analysis of RNA-Seq data[J]. PLoS one, 2015, 10(10): e0140032.
[24] 焦李成, 赵进, 杨淑媛, 等. 稀疏认知学习、计算与识别的研究进展[J]. 计算机学报, 2016, 39(4): 835-852
JIAO Licheng, ZHAO Jin, YANG Shuyuan, et al. Research advances on sparse cognitive learning, computing and recognition[J]. Chinese journal of computers, 2016, 39(4): 835-852
[25] JENATTON R, MAIRAL J, OBOZINSKI G, et al. Proximal methods for sparse hierarchical dictionary learning[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa, Israel, 2010: 487-494.
[26] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nature methods, 2012, 9(4): 357-359.
[27] MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature methods, 2008, 5(7): 621-628.
[28] SEQC/MAQC-III Consortium. A comprehensive assessment of RNA-Seq accuracy, reproducibility and information content by the sequencing quality control consortium[J]. Nature biotechnology, 2014, 32(9): 903-914.
[29] BULLARD J H, PURDOM E, HANSEN K D, et al. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments[J]. BMC bioinformatics, 2010, 11(1): 1-13.

备注/Memo

收稿日期:2021-01-18。
基金项目:国家自然科学基金项目(61802193);江苏省自然科学基金项目(BK20170934);南京林业大学青年科技创新基金项目(CX2017031);汕尾市省级科技创新战略专项资金项目(2018D2002)
作者简介:张礼,讲师,博士,主要研究方向为机器学习、生物信息学;马越,助教,硕士,主要研究方向为分子生物学、神经系统疾病;吴东洋,讲师,博士,主要研究方向为数据挖掘、生物信息学
通讯作者:张礼.E-mail:lizhang@njfu.edu.cn

更新日期/Last Update: 2021-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com