[1]李凤月,齐小刚,班利明,等.面向动用计划的车辆装备备件预测研究[J].智能系统学报,2021,16(6):1064-1072.[doi:10.11992/tis.202012026]
 LI Fengyue,QI Xiaogang,BAN Liming,et al.Vehicle maintenance spare-part prediction for equipment use plan[J].CAAI Transactions on Intelligent Systems,2021,16(6):1064-1072.[doi:10.11992/tis.202012026]
点击复制

面向动用计划的车辆装备备件预测研究

参考文献/References:
[1] 杨超, 侯兴明, 廖兴禾, 等. 装备维修保障资源配置文献分析与内容综述[J]. 兵器装备工程学报, 2019, 40(7): 170-175
YANG Chao, HOU Xingming, LIAO Xinghe, et al. Literature analysis and content review of equipment maintenance support resource allocation[J]. Journal of ordnance equipment engineering, 2019, 40(7): 170-175
[2] 高颖杰, 曹继平, 雷宁, 等. 装备维修保障资源配置优化研究综[J]. 火炮发射与控制学报, 2020, 41(3): 102-106
GAO Yingjie, CAO Jiping, LEI Ning, et al. Review of study on equipment maintenance support resource allocation optimization[J]. Journal of gun launch & control, 2020, 41(3): 102-106
[3] ZHANG Dapeng, LI Fengju, WANG Fengzhong, et al. Research on vehicle equipment warehouse security level optimization based on greedy algorithm[C]//Proceedings of the 2019 2nd International Conference on Information Management and Management Sciences. Chengdu, China, 2019: 118-122.
[4] WANG Jingjing, YIN Hui. Failure rate prediction model of substation equipment based on Weibull distribution and time series analysis[J]. IEEE access, 2019, 7: 85298-85309.
[5] KUTY?OWSKA M. Neural network approach for failure rate prediction[J]. Engineering failure analysis, 2015, 47: 41-48.
[6] 白润才, 柴森霖, 刘光伟, 等. 基于Mallat算法与ARMA模型的露天矿卡车故障率预测[J]. 中国安全科学学报, 2018, 28(10): 31-37
BAI Runcai, CHAI Senlin, LIU Guangwei, et al. Method for predicting truck’s failure rate in open-pit mine based on Mallat algorithm and ARMA model[J]. China safety science journal, 2018, 28(10): 31-37
[7] GAO Tianshan, GAO Bo. Failure rate prediction of substation equipment combined with grey linear regression combination model[C]//IEEE International Conference on High Voltage Engineering and Application. Chengdu, China, 2016: 1-5.
[8] 张浩, 高朝晖. 基于对故障规律统计分析的汽车备件需求预测[J]. 数理统计与管理, 2012, 31(4): 627-632
ZHANG Hao, GAO Zhaohui. Demand forecasting for auto spare parts based on statistical analysis of the failure rules[J]. Journal of applied statistics and management, 2012, 31(4): 627-632
[9] 张建荣, 于永利, 张柳, 等. 维修器材联合订货的库存决策模型[J]. 系统工程与电子技术, 2013, 35(1): 109-112
ZHANG Jianrong, YU Yongli, ZHANG Liu, et al. Inventory decision model of joint ordering policy with maintenance materials[J]. Systems engineering and electronics, 2013, 35(1): 109-112
[10] CARVAJAL J, CASTA?O F, SARACHE W, et al. Heuristic approaches for a two-echelon constrained joint replenishment and delivery problem[J]. International journal of production economics, 2020, 220: 107420-107433.
[11] 杨宇航, 赵建民, 李志忠, 等. 备件管理系统仿真研究[J]. 系统仿真学报, 2004, 16(5): 981-986, 991
YANG Yuhang, ZHAO Jianmin, LI Zhizhong, et al. Research on spares management system with simulation[J]. Journal of system simulation, 2004, 16(5): 981-986, 991
[12] NAGASAWA K, IROHARA T, MATOBA Y, et al. Applying genetic algorithm for can-order policies in the joint replenishment problem[J]. Industrial engineering and management systems, 2015, 14(1): 1-10.
[13] 张建荣, 于永利, 张柳, 等. 基于定周期策略的多品种维修器材联合订购模型[J]. 火力与指挥控制, 2012, 37(9): 112-116
ZHANG Jianrong, YU Yongli, ZHANG Liu, et al. Joint order model of multi-items maintenance spare parts based on periodic policy[J]. Fire control & command control, 2012, 37(9): 112-116
[14] WANG Yadong, SHI Quan. Improved dynamic PSO-based algorithm for critical spare parts supply optimization under (T, S) inventory policy[J]. IEEE access, 2019, 7: 153694-153709.
[15] LI Jiying, JI Zhihong. Joint replenishment problem of military aircraft consumptive items under resource constraint[C]//2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE). Prague, Czech Republic, 2017: 786-790.
[16] ZENG Yurong, PENG Lu, ZHANG Jinlong, et al. An effective hybrid differential evolution algorithm incorporating simulated annealing for joint replenishment and delivery problem with trade credit[J]. International journal of computational intelligence systems, 2016, 9(6): 1001-1015.
[17] 周云彦, 王建平, 赵聪, 等. 一种装甲装备摩托小时梯次储备的生成与控制方法[J]. 装甲兵工程学院学报, 2012, 26(5): 24-28
ZHOU Yunyan, WANG Jianping, ZHAO Cong, et al. Formation and control method of motor hour echelon storage for a kind of armored equipment[J]. Journal of academy of armored force engineering, 2012, 26(5): 24-28
[18] 赵劲松, 令狐昌应, 贺宇. 战时车辆装备维修任务量测算模型[J]. 军事交通学院学报, 2016, 18(6): 27-31
ZHAO Jinsong, LINGHU Changying, HE Yu. Repair workload measuring model of wartime vehicle equipment[J]. Journal of military transportation university, 2016, 18(6): 27-31
[19] 薛永亮, 陈振林. 基于改进的神经网络对航空发动机故障率预测研究[J]. 计算机测量与控制, 2019, 27(5): 44-47
XUE Yongliang, CHEN Zhenlin. Study on prediction of aeroengine failure rate based on improved neural network[J]. Computer measurement & control, 2019, 27(5): 44-47
[20] ALIZADEH A, ALAYI N M, FEREIDUNIAN A, et al. A Recurrent neural network approach to model failure rate considering random and deteriorating failures[C]//2021 26th International Computer Conference, Computer Society of Iran. Tehran, Iran, 2021: 1-7.
[21] 张铸, 饶盛华, 张仕杰. 一种新型的混沌步长果蝇优化算法[J]. 计算机工程与科学, 2020, 42(4): 755-760
ZHANG Zhu, RAO Shenghua, ZHANG Shijie. A novel fruit fly optimization algorithm with chaotic step[J]. Computer engineering & science, 2020, 42(4): 755-760
[22] DEL SER J, OSABA E, MOLINA D, et al. HERRERA F. Bio-inspired computation: where we stand and what’s next[J]. Swarm and evolutionary computation, 2019, 48: 220-250.
[23] SONG Yingjie, WU Daqing, DENG Wu, et al. MPPCEDE: multi-population parallel co-evolutionary differential evolution for parameter optimization[J]. Energy conversion and management, 2021, 228: 113661.
[24] 王守娜, 刘弘, 高开周. 一种应用于函数优化问题的多种群人工蜂群算法[J]. 郑州大学学报(工学版), 2018, 39(6): 30-35
WANG Shouna, LIU Hong, GAO Kaizhou. A multiswarm artificial bee colony algorithm for function optimization[J]. Journal of Zhengzhou University ( engineering science edition), 2018, 39(6): 30-35
[25] SONG Yingjie, WU Daqing, MOHAMED A W, et al. Enhanced success history adaptive DE for parameter optimization of photovoltaic models[J]. Complexity, 2021, 2021: 6660115.
[26] CAI Xing, ZHAO Huimin, SHANG Shifan, et al. An improved quantum-inspired cooperative co-evolution algorithm with muli-strategy and its application[J]. Expert systems with applications, 2021, 171: 114629-114642.
[27] XUE Jiankai, SHEN Bo. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems science & control engineering, 2020, 8(1): 22-34.
[28] 石建平, 李培生, 刘国平, 等. 求解约束优化问题的改进果蝇优化算法及其工程应用[J]. 控制与决策, 2021, 36(2): 314-324
SHI Jianping, LI Peisheng, LIU Guoping, et al. Improved fruit fly optimization algorithm for solving constrained optimization problems and engineering applications[J]. Control and decision, 2021, 36(2): 314-324

备注/Memo

收稿日期:2020-12-16。
基金项目:国家自然科学基金项目(61877067);数据链技术重点实验室基金项目(CLDL-20182115)
作者简介:李凤月,硕士研究生,主要研究方向为系统建模、资源优化;齐小刚,教授,博士生导师,主要研究方向为复杂系统建模与仿真。参加了国家自然科学基金项目、省自然科学基金项目、中国–加拿大国际合作项目、ISN国家重点实验室专项基金项目等多项。发表学术论文100余篇;班利明,工程师,主要研究方向为装备维修保障优化
通讯作者:齐小刚.E-mail:xgqi@xidian.edu.cn

更新日期/Last Update: 2021-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com