[1]齐小刚,姚兆冬.一种基于灰色理论和弱缓冲算子的装备备件预测方法[J].智能系统学报,2025,20(2):495-505.[doi:10.11992/tis.202402014]
 QI Xiaogang,YAO Zhaodong.A prediction method for equipment spare parts based on grey theory and weak buffering operator[J].CAAI Transactions on Intelligent Systems,2025,20(2):495-505.[doi:10.11992/tis.202402014]
点击复制

一种基于灰色理论和弱缓冲算子的装备备件预测方法

参考文献/References:
[1] HAN Xiao, WANG Zili, XIE Min, et al. Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence[J]. Reliability engineering & system safety, 2021, 210: 107560.
[2] KAPARTHI S, BUMBLAUSKAS D. Designing predictive maintenance systems using decision tree-based machine learning techniques[J]. International journal of quality & reliability management, 2020, 37(4): 659-686.
[3] 王亚洲. 维修保障资源预测与调度优化方法研究[D]. 西安: 西安电子科技大学, 2022.
WANG Yazhou. Research on maintenance support resource prediction and scheduling optimization method[D]. Xi’an: Xidian University, 2022.
[4] 周轩毅. 航空装备保障维修预测关键技术研究与实现[D]. 长春: 吉林大学, 2020.
ZHOU Xuanyi. Research and implementation on key technologies of aviation equipment maintenance forecast[D]. Changchun: Jilin University, 2020.
[5] 王慧敏. 现役雷达预测性维修保障资源匹配算法研究[D]. 西安: 西安电子科技大学, 2018.
WANG Huimin. Research on matching algorithm of predictive maintenance support resources for active radar[D]. Xi’an: Xidian University, 2018.
[6] 王亚彬, 贾希胜, 康建设. 仿真技术在维修资源预测中的应用研究[J]. 计算机仿真, 2005, 22(7): 249-251,258-259.
WANG Yabin, JIA Xisheng, KANG Jianshe. Research on application of simulation technology in maintenance resources prediction[J]. Computer simulation, 2005, 22(7): 249-251,258-259.
[7] 王小巍, 陈砚桥, 金家善, 等. 数据与知识双驱动的备件需求模糊预测模型[J]. 国防科技大学学报, 2024, 46(2): 205-214.
WANG Xiaowei, CHEN Yanqiao, JIN Jiashan, et al. Spare parts demand fuzzy prediction model driven by data and knowledge[J]. Journal of national university of defense technology, 2024, 46(2): 205-214.
[8] MI Shanghua, FENG Yixiong, ZHENG Hao, et al. Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework[J]. Journal of manufacturing systems, 2021, 58: 329-345.
[9] 魏曦初, 邱立鹏. 基于时间有效性的备件需求预测方法研究[J]. 中国设备工程, 2022(22): 177-181.
WEI Xichu, QIU Lipeng. Research on spare parts demand forecasting method based on time effectiveness[J]. China plant engineering, 2022(22): 177-181.
[10] 王鑫, 刘端红, 郝钢, 等. 基于状态维修的备件预测技术[J]. 直升机技术, 2021(4): 67-72.
WANG Xin, LIU Duanhong, HAO Gang, et al. The prognostic technology of spare material for condition based maintenance[J]. Helicopter technique, 2021(4): 67-72.
[11] 龙灏, 向静文, 晋旭博. 备件需求预测方法研究[J]. 工业控制计算机, 2021, 34(5): 68-70.
LONG Hao, XIANG Jingwen, JIN Xubo. Research on spare parts demand forecasting method[J]. Industrial control computer, 2021, 34(5): 68-70.
[12] 康警予, 陈忠, 刘延杰, 等. 装备保障备件需求预测算法[J]. 现代防御技术, 2020, 48(4): 102-109.
KANG Jingyu, CHEN Zhong, LIU Yanjie, et al. Spare parts demand prediction algorithm for equipment support[J]. Modern defence technology, 2020, 48(4): 102-109.
[13] 薛干敏, 高键, 齐亮. 基于熵权的组合预测备件需求方法研究[J]. 计算机与数字工程, 2022, 50(12): 2630-2632,2659.
XUE Ganmin, GAO Jian, QI Liang. Research on the method of combination forecasting spare parts demand based on entropy weight[J]. Computer & digital engineering, 2022, 50(12): 2630-2632,2659.
[14] YANG Chao, XU Qingyao, QIN Haifeng, et al. Grey forecasting method of equipment spare parts demand based on swarm intelligence optimization[C]//2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference. Chongqing: IEEE, 2021: 1-4.
[15] ABBASIMEHR H, SHABANI M, YOUSEFI M. An optimized model using LSTM network for demand forecasting[J]. Computers & industrial engineering, 2020, 143: 106435.
[16] BOUKHTOUTA A, JENTSCH P. Support vector machine for demand forecasting of Canadian armed forces spare parts[C]//2018 6th International Symposium on Computational and Business Intelligence. Basel: IEEE, 2018: 59-64.
[17] 张楠. 昆明地铁备件库存控制优化研究[D]. 昆明: 昆明理工大学, 2019.
ZHANG Nan. Research on optimization of spare parts inventory control in Kunming metro[D]. Kunming: Kunming University of Science and Technology, 2019.
[18] 陈鹏. L公司服务备件库存管理优化研究[D]. 秦皇岛: 燕山大学, 2019.
CHEN Peng. Research on optimization of service spare parts inventory management in L company[D]. Qinhuangdao: Yanshan University, 2019.
[19] 邵松世, 胡光振, 张青煜. 基于整机轮换修理的舰船备件需求预测方法[J]. 舰船电子工程, 2022, 42(10): 140-143.
SHAO Songshi, HU Guangzhen, ZHANG Qingyu. Spare demand forecasting for warship based on rotation repair of the whole machine[J]. Ship electronic engineering, 2022, 42(10): 140-143.
[20] 李婷, 刘林, 彭云程, 等. 面向战备完好的飞机群组预防性维护优化和备件预测方法[J]. 兵工学报, 2022, 43(7): 1695-1705.
LI Ting, LIU Lin, PENG Yuncheng, et al. Preventive maintenance optimization and spare parts prediction method for aircraft group oriented to operational readiness[J]. Acta armamentarii, 2022, 43(7): 1695-1705.
[21] 王莉莉, 项华春, 王政. 基于系统动力学的飞机备件需求预测[J]. 产业创新研究, 2022(13): 60-62.
WANG Lili, XIANG Huachun, WANG Zheng. Forecast of aircraft spare parts demand based on system dynamics[J]. Industrial innovation, 2022(13): 60-62.
[22] 蔡志成, 王昫. 基于改进灰色马尔可夫模型的雷达备件需求预测[J]. 现代信息科技, 2022, 6(13): 86-89.
CAI Zhicheng, WANG Xu. Demand prediction of radar spare parts based on improved grey Markov model[J]. Modern information technology, 2022, 6(13): 86-89.
[23] 王小巍, 陈砚桥, 金家善, 等. 备件需求预测中的不确定性问题研究综述[J]. 科学技术与工程, 2024, 24(4): 1338-1346.
WANG Xiaowei, CHEN Yanqiao, JIN Jiashan, et al. Spare parts demand forecasting: a review on uncertainty problems[J]. Science technology and engineering, 2024, 24(4): 1338-1346.
[24] 李春秀, 孙明明. 备件分类与需求预测研究综述[J]. 电子产品可靠性与环境试验, 2023, 41(5): 116-121.
LI Chunxiu, SUN Mingming. Summary of research on spare parts classification and demand forecast[J]. Electronic product reliability and environmental testing, 2023, 41(5): 116-121.
[25] 丁广威, 刘旭宁, 王道重, 等. 备件需求预测方法研究现状综述[J]. 价值工程, 2020, 39(4): 296-298.
DING Guangwei, LIU Xuning, WANG Daozhong, et al. Review on the research status of spare parts demand forecasting methods[J]. Value engineering, 2020, 39(4): 296-298.
[26] 徐凯. 基于灰色GM(1, 1)模型的某三甲综合医院人力资源需求预测分析[J]. 中国卫生标准管理, 2023, 14(18): 58-62.
XU Kai. Prediction and analysis of human resource demand of grade A tertiary general hospital based on grey GM(1, 1) model[J]. China health standard management, 2023, 14(18): 58-62.
[27] 左娟. 基于灰色预测的企业物流人力资源需求预测研究[J]. 物流科技, 2022, 45(20): 71-73,77.
ZUO Juan. Research on human resource demand prediction of enterprise logistics based on grey prediction[J]. Logistics sci-tech, 2022, 45(20): 71-73,77.
[28] 陈心愿, 陈友军. 一类新的变权缓冲算子的构造及其性质研究[J]. 绵阳师范学院学报, 2023, 42(5): 1-10.
CHEN Xinyuan, CHEN Youjun. The construction and properties of a new class of variable weight buffer operators[J]. Journal of Mianyang teachers’ college, 2023, 42(5): 1-10.
[29] 江建明, 吴文泽, 张涛. 一种新型对数弱化缓冲算子的构造及其应用[J]. 数学的实践与认识, 2020, 50(10): 56-63.
JIANG Jianming, WU Wenze, ZHANG Tao. Construction and application of a new logarithmic weakening buffer operators[J]. Mathematics in practice and theory, 2020, 50(10): 56-63.
[30] 王正新, 党耀国, 裴玲玲. 缓冲算子的光滑性[J]. 系统工程理论与实践, 2010, 30(9): 1643-1649.
WANG Zhengxin, DANG Yaoguo, PEI Lingling. The smoothness of buffer operators[J]. Systems engineering-theory & practice, 2010, 30(9): 1643-1649.
[31] 党耀国, 刘思峰, 刘斌. 以$ \mathrm{x^{\left(1\right)}\left(n\right)} $为初始条件的GM模型[J]. 中国管理科学, 2005, 13(1): 132-135.
DANG Yaoguo, LIU Sifeng, LIU Bin. The GM models that $ \mathrm{x^{\left(1\right)}\left(n\right)} $ be taken as initial value[J]. Chinese journal of management science, 2005, 13(1): 132-135.
[32] 肖新平, 宋中民, 李峰. 灰技术基础及其应用[M]. 北京: 科学出版社, 2005.
[33] 邱利军, 张波, 张京奎. 基于ln(x+c)变换的GM(1, 1)模型及其变形预测[J]. 人民长江, 2020, 51(1): 136-140.
QIU Lijun, ZHANG Bo, ZHANG Jingkui. GM(1, 1) model based on function ln(x+c) transformation and its application in deformation prediction[J]. Yangtze river, 2020, 51(1): 136-140.
[34] 刘瑞. 灰色预测中原始序列光滑度的提升[J]. 宜春学院学报, 2017, 39(9): 29-33.
LIU Rui. Improvement for the smoothness of original sequence in grey prediction[J]. Journal of Yichun University, 2017, 39(9): 29-33.
[35] 彭勇, 陈俞强. 一种改进的灰度预测模型[J]. 计算机与数字工程, 2012, 40(1): 40-41,62.
PENG Yong, CHEN Yuqiang. An improved gray pridiction model[J]. Computer & digital engineering, 2012, 40(1): 40-41,62.
相似文献/References:
[1]吴朝阳.改进的灰色模型与ARMA模型的股指预测[J].智能系统学报,2010,5(3):277.
 WU Zhao-yang.Forecasting stock indexes based on a revised grey model and the ARMA model[J].CAAI Transactions on Intelligent Systems,2010,5():277.
[2]吴朝阳.小波变换和GM-ARMA组合模型的股指预测[J].智能系统学报,2011,6(3):279.
 WU Zhaoyang.Using wavelet transformation and a GM-ARMA model to forecast stock index[J].CAAI Transactions on Intelligent Systems,2011,6():279.
[3]李凤月,齐小刚,班利明,等.面向动用计划的车辆装备备件预测研究[J].智能系统学报,2021,16(6):1064.[doi:10.11992/tis.202012026]
 LI Fengyue,QI Xiaogang,BAN Liming,et al.Vehicle maintenance spare-part prediction for equipment use plan[J].CAAI Transactions on Intelligent Systems,2021,16():1064.[doi:10.11992/tis.202012026]

备注/Memo

收稿日期:2024-2-9。
基金项目:国家自然科学基金项目(62373291, 62372354).
作者简介:齐小刚,教授,博士生导师。主要研究方向为健康管理与故障诊断、资源调度与优化算法研究。主持完成国家自然科学基金项目等30余项,登记软件著作权13项,发表学术论文150余篇。E-mail:xgqi@xidian.edu.cn;姚兆冬,硕士研究生,主要研究方向为装备维修保障。E-mail:y2234581225@163.com。
通讯作者:齐小刚. E-mail:xgqi@xidian.edu.cn

更新日期/Last Update: 2025-03-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com