[1]莫宏伟,傅智杰.基于迁移学习的无监督跨域人脸表情识别[J].智能系统学报,2021,16(3):397-406.[doi:10.11992/tis.202008034]
 MO Hongwei,FU Zhijie.Unsupervised cross-domain expression recognition based on transfer learning[J].CAAI Transactions on Intelligent Systems,2021,16(3):397-406.[doi:10.11992/tis.202008034]
点击复制

基于迁移学习的无监督跨域人脸表情识别

参考文献/References:
[1] ZHENG Wenming, TANG Hao, HUANG T S. Emotion recognition from non-frontal facial images[M]//KONAR A, CHAKRABORTY A. Emotion Recognition:A Pattern Analysis Approach. Hoboken, USA:John Wiley & Sons, 2015:183-213.
[2] WANG Yongjin, GUAN Ling, VENETSANOPOULOS A N. Kernel cross-modal factor analysis for information fusion with application to bimodal emotion recognition[J]. IEEE transactions on multimedia, 2012, 14(3):597-607.
[3] YAN Jingjie, ZHENG Wenming, XU Guanming, et al. Sparse kernel reduced-rank regression for bimodal emotion recognition from facial expression and speech[J]. IEEE transactions on multimedia, 2016, 18(7):1319-1329.
[4] ZENG Zhihong, PANTIC M, ROISMAN G I, et al. A survey of affect recognition methods:audio, visual, and spontaneous expressions[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(1):39-58.
[5] CHU W S, DE LA TORRE F, COHN J F. Selective transfer machine for personalized facial expression analysis[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(3):529-545.
[6] ZHENG Wenming, ZHOU Xiaoyan, ZOU Cairong, et al. Facial expression recognition using kernel canonical correlation analysis (KCCA)[J]. IEEE transactions on neural networks, 2006, 17(1):233-238.
[7] UDDIN M Z. A local feature-based facial expression recognition system from depth video[M]//DELIGIANNIDIS L, ARABNIA H R. Emerging Trends in Image Processing, Computer Vision and Pattern Recognition. Amsterdam:Elsevier, 2015:407-419.
[8] YU Zhiding, ZHANG Cha. Image based static facial expression recognition with multiple deep network learning[C]//Proceedings of the 2015 ACM on International Conference on Multimodal Interaction. New York, USA:ACM, 2015:433?442.
[9] BACCOUCHE M, MAMALET F, WOLF C, et al. Spatio-temporal convolutional sparse auto-encoder for sequence classification[C]//Proceedings of the of British Machine Vision Conference. Guildford, UK:BMVA Press, 2012:12.
[10] WANG Hua, NIE Feiping, HUANG Heng, et al. Dyadic transfer learning for cross-domain image classification[C]//IEEE International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011:551?556.
[11] LUO Jie, TOMMASI T, CAPUTO B. Multiclass transfer learning from unconstrained priors[C]//IEEE International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011:1863?1870.
[12] ROY S D, MEI Tao, ZENG Wenjun, et al. SocialTransfer:cross-domain transfer learning from social streams for media applications[C]//Proceedings of the 20th ACM international conference on Multimedia. Nara, Japan:ACM, 2012:649?658.
[13] WANG Shuhui, JIANG Shuqiang, HUANG Qingming, et al. Multi-feature metric learning with knowledge transfer among semantics and social tagging[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence:IEEE, 2012:2240?2247.
[14] AYTAR Y, ZISSERMAN A. Tabula rasa:model transfer for object category detection[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011:2252?2259.
[15] GOPALAN R, LI Ruonan, CHELLAPPA R. Domain adaptation for object recognition:an unsupervised approach[C]//2011 International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011:999?1006.
[16] GUILLAUMIN M, FERRARI V. Large-scale knowledge transfer for object localization in ImageNet[C]//Proceedings of 2012 IEEE Computer Vision and Pattern Recognition. Providence, USA:IEEE, 2012:3202?3209.
[17] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009:951?958.
[18] JHUO I H, LIU D, LEE D T, et al. Robust visual domain adaptation with low-rank reconstruction[C]//2012 IEEE Computer Vision and Pattern Recognition. Providence, USA:IEEE, 2012:2168?2175.
[19] LAMPERT C H, KR?MER O. Weakly-paired maximum covariance analysis for multimodal dimensionality reduction and transfer learning[C]//Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece:Springer-Verlag, 2010:566?579.
[20] QIU Qiang, PATEL V M, TURAGA P, et al. Domain adaptive dictionary learning[C]//Proceedings of the 12th European Conference on Computer Vision. Florence, Italy:Springer-Verlag, 2012:631?645.
[21] DAI Wenyuan, YANG Qiang, XUE Guirong, et al. Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine Learning. Corvalis, USA:ACM, 2007:193?200.
[22] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE transactions on neural networks, 2011, 22(2):199-210.
[23] GONG Boqing, SHI Yuan, SHA Fei, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA:IEEE, 2012:2066?2073.
[24] ZHONG Erheng, FAN Wei, PENG Jing, et al. Cross domain distribution adaptation via kernel mapping[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France:ACM, 2009.
[25] BRUZZONE L, MARCONCINI M. Domain adaptation problems:A DASVM classification technique and a circular validation strategy[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(5):770-787.
[26] QUANZ B, HUAN J, MISHRA M. Knowledge transfer with low-quality data:A feature extraction issue[J]. IEEE transactions on knowledge and data engineering, 2012, 24(10):1789-1802.
[27] LUCEY P, COHN J F, KANADE T, et al. The extended Cohn-Kanade dataset (CK+):a complete dataset for action unit and emotion-specified expression[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops. San Francisco, USA:IEEE, 2010:94-101.
[28] KANADE T, COHN J F, TIAN Yingli. Comprehensive database for facial expression analysis[C]//Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition. Grenoble, France:IEEE, 2020:46-53.
[29] ZHAO Guoying, HUANG Xiaohua, TAINI M, et al. Facial expression recognition from near-infrared videos[J]. Image and vision computing, 2011, 29(9):607-619.
[30] HUANG J, GRETTON A, BORGWARDT K, et al. Correcting sample selection bias by unlabeled data[J]. Advances in neural information processing systems, 2006, 19:601-608.
[31] SUGIYAMA M, NAKAJIMA S, KASHIMA H, et al. Direct importance estimation with model selection and its application to covariate shift adaptation[C]//Proceedings of 21st Annual Conference on Advances in Neural Information Processing Systems. Vancouver, Canada:NIPS, 2008:1433-1440.
[32] 刘斌, 米强, 徐岩. LBP和MB-LBP加权融合的人脸识别[J]. 计算机工程与设计, 2018, 39(2):551-556
LIU Bin, MI Qiang, XU Yan. Face recognition based on weighted fusion of LBP and MB-LBP features[J]. Computer engineering and design, 2018, 39(2):551-556
相似文献/References:
[1]王立国,赵亮,石瑶.基于最大最小距离的高光谱遥感图像波段选择[J].智能系统学报,2018,13(1):131.[doi:10.11992/tis.201703023]
 WANG Liguo,ZHAO Liang,SHI Yao.Maximin distance algorithm-based band selection for hyperspectral imagery[J].CAAI Transactions on Intelligent Systems,2018,13():131.[doi:10.11992/tis.201703023]
[2]刘帅师,郭文燕,张言,等.鲁棒的正则化编码随机遮挡表情识别[J].智能系统学报,2018,13(2):261.[doi:10.11992/tis.201609002]
 LIU Shuaishi,GUO Wenyan,ZHANG Yan,et al.Recognition of facial expression in case of random shielding based on robust regularized coding[J].CAAI Transactions on Intelligent Systems,2018,13():261.[doi:10.11992/tis.201609002]
[3]张智,毕晓君.基于风格转换的无监督聚类行人重识别[J].智能系统学报,2021,16(1):48.[doi:10.11992/tis.202012014]
 ZHANG Zhi,BI Xiaojun.Clustering approach based on style transfer for unsupervised person re-identification[J].CAAI Transactions on Intelligent Systems,2021,16():48.[doi:10.11992/tis.202012014]
[4]伍锡如,凌星雨.基于改进的Faster RCNN面部表情检测算法[J].智能系统学报,2021,16(2):210.[doi:10.11992/tis.201910020]
 WU Xiru,LING Xingyu.Facial expression recognition based on improved Faster RCNN[J].CAAI Transactions on Intelligent Systems,2021,16():210.[doi:10.11992/tis.201910020]
[5]陈彤,陈秀宏.特征自表达和图正则化的鲁棒无监督特征选择[J].智能系统学报,2022,17(2):286.[doi:10.11992/tis.202012043]
 CHEN Tong,CHEN Xiuhong.Feature self-representation and graph regularization for robust unsupervised feature selection[J].CAAI Transactions on Intelligent Systems,2022,17():286.[doi:10.11992/tis.202012043]
[6]杨梦茵,陈俊芬,翟俊海.非对称卷积编码器的聚类算法[J].智能系统学报,2022,17(5):900.[doi:10.11992/tis.202107021]
 YANG Mengyin,CHEN Junfen,ZHAI Junhai.A clustering method based on the asymmetric convolutional autoencoder[J].CAAI Transactions on Intelligent Systems,2022,17():900.[doi:10.11992/tis.202107021]
[7]闫河,李梦雪,张宇宁,等.面向表情识别的重影非对称残差注意力网络模型[J].智能系统学报,2023,18(2):333.[doi:10.11992/tis.202201003]
 YAN He,LI Mengxue,ZHANG Yuning,et al.A ghost asymmetric residual attention network model for facial expression recognition[J].CAAI Transactions on Intelligent Systems,2023,18():333.[doi:10.11992/tis.202201003]
[8]过伶俐,陈秀宏.潜在多步马尔可夫概率的鲁棒无监督特征选择[J].智能系统学报,2023,18(5):1017.[doi:10.11992/tis.202208013]
 GUO Lingli,CHEN Xiuhong.Robust unsupervised feature selection via multistep Markov probability and latent representation[J].CAAI Transactions on Intelligent Systems,2023,18():1017.[doi:10.11992/tis.202208013]

备注/Memo

收稿日期:2020-08-28。
基金项目:国家自然科学基金项目(60035117)
作者简介:莫宏伟,教授,博士生导师,博士,主要研究方向为类脑计算与人工智能、机器视觉与机器认知、人机混合智能。主持国家自然科学基金等项目20余项。出版专著6部,发表学术论文80余篇;傅智杰,硕士研究生,主要研究方向为深度学习、计算机视觉、医学影像
通讯作者:莫宏伟.E-mail:honwei2004@126.com

更新日期/Last Update: 2021-06-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com