[1]戴丽.双向通信无人机集群领航顶点选取方法[J].智能系统学报,2021,16(3):484-492.[doi:10.11992/tis.202006010]
 DAI Li.Leaders’ selection for UAV swarm with two-way communication[J].CAAI Transactions on Intelligent Systems,2021,16(3):484-492.[doi:10.11992/tis.202006010]
点击复制

双向通信无人机集群领航顶点选取方法

参考文献/References:
[1] DORRI A, KANHERE S S, JURDAK R. Multi-agent systems:a survey[J]. IEEE access, 2018, 6:28573-28593.
[2] 肖延东, 老松杨, 侯绿林, 等. 基于节点负荷失效的网络可控性研究[J]. 物理学报, 2013, 62(18):180201
XIAO Yandong, LAO Songyang, HOU Lülin, et al. Network controllability based on node overloaded failure[J]. Acta Physica Sinica, 2013, 62(18):180201
[3] LIU Yangyu, SLOTINE J J, BARABáSI A L. Controllability of complex networks[J]. Nature, 2011, 473(7346):167-173.
[4] KUMAR Y, SHARA M, PRASANNA C. Minimizing inputs for strong structural controllability[C]//Proceedings of 2019 American Control Conference. Philadelphia, PA, USA, 2019:2048?2053.
[5] TANNER H G. On the controllability of nearest neighbor interconnections[C]//Proceedings of the 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601). Nassau, Bahamas, 2004:2467-2472.
[6] MONSHIZADEH N, ZHANG Shou, CAMLIBEL M K. Zero forcing sets and controllability of dynamical systems defined on graphs[J]. IEEE transactions on automatic control, 2014, 59(9):2562-2567.
[7] MOUSAVI S S, CHAPMAN A, HAERI M, et al. Null space strong structural controllability via skew zero forcing sets[C]//Proceedings of 2018 European Control Conference. Limassol, Cyprus, 2018:1845-1850.
[8] MOUSAVI S S, HAERI M, MESBAHI M. On the structural and strong structural controllability of undirected networks[J]. IEEE transactions on automatic control, 2018, 63(7):2234-2241.
[9] CHAPMAN A, MESBAHI M. On strong structural controllability of networked systems:a constrained matching approach[C]//Proceedings of 2013 American Control Conference. Washington, DC, USA, 2013:6126-6131.
[10] TREFOIS M, DELVENNE J C. Zero forcing number, constrained matchings and strong structural controllability[J]. Linear algebra and its applications, 2015, 484:199-218.
[11] OLESKY D D, TSATSOMEROS M, VAN DEN DRIESSCHE P. Qualitative controllability and uncontrollability by a single entry[J]. Linear algebra and its applications, 1993, 187:183-194.
[12] JI Meng, EGERSTEDT M. A graph-theoretic characterization of controllability for multi-agent systems[C]//Proceedings of 2007 American Control Conference. New York, NY, USA, 2007:4588-4593.
[13] RAHMANI A, JI Meng, MESBAHI M, et al. Controllability of multi-agent systems from a graph-theoretic perspective[J]. SIAM journal on control and optimization, 2009, 48(1):162-186.
[14] MARTINI S, EGERSTEDT M, BICCHI A. Controllability analysis of multi-agent systems using relaxed equitable partitions[J]. International journal of systems, control and communications, 2010, 2(1/2/3):100-121.
[15] AGUILAR C O, GHARESIFARD B. Almost equitable partitions and new necessary conditions for network controllability[J]. Automatica, 2017, 80:25-31.
[16] JI Zhijian, WANG Zidong, LIN Hai, et al. Interconnection topologies for multi-agent coordination under leader-follower framework[J]. Automatica, 2009, 45(12):2857-2863.
[17] JI Zhijian, YU Haisheng. A new perspective to graphical characterization of multiagent controllability[J]. IEEE transactions on cybernetics, 2017, 47(6):1471-1483.
[18] WANG Long, JIANG Fangcui, XIE Guangming, et al. Controllability of multi-agent systems based on agreement protocols[J]. Science in China series F:information sciences, 2009, 52(11):2074-2088.
[19] JIANG Fangcui, WANG Long, XIE Guangming, et al. On the controllability of multiple dynamic agents with fixed topology[C]//Proceedings of the 2009 Conference on American Control Conference. St. Louis, Missouri, USA, 2009:5665-5670.
[20] HAMDAN A M A, NAYFEH A H. Measures of modal controllability and observability for first-and second-order linear systems[J]. Journal of guidance, control, and dynamics, 1989, 12(3):421-428.
[21] OLSHEVSKY A. Minimal controllability problems[J]. IEEE transactions on control of network systems, 2014, 3(1):249-258.
[22] PASQUALETTI F, ZAMPIERI S, BULLO F. Controllability metrics, limitations and algorithms for complex networks[J]. IEEE transactions on control of network systems, 2014, 1(1):40-52.
[23] SUMMERS T H, CORTESI F L, LYGEROS J. On submodularity and controllability in complex dynamical networks[J]. IEEE transactions on control of network systems, 2016, 3(1):91-101.
[24] FITCH K, LEONARD N E. Optimal leader selection for controllability and robustness in multi-agent networks[C]//Proceedings of 2016 European Control Conference. Aalborg, Denmark, 2016:1550?1555.
[25] MOHAMMADREZA D. Minimal driver nodes for structural controllability of large-scale dynamical systems:node classification[J]. IEEE systems journal, 2020, 14(3):4209-4216.
[26] BIYIKO?U T, LEYDOLD J, STADLER P F. Laplacian eigenvectors of graphs:perron-frobenius and faber-krahn type theorems[M]. New York:Springer, 2007.

备注/Memo

收稿日期:2020-06-08。
基金项目:国家自然科学基金项目(11872371)
作者简介:戴丽,副教授,博士,主要研究方向为图论、博弈论和网络优化算法等。主持校预研项目1项,参与国家自然科学基金2项。发表学术论文10余篇
通讯作者:戴丽.E-mail:daili@nudt.edu.cn

更新日期/Last Update: 2021-06-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com