[1]崔铁军,李莎莎.基于因素空间的人工智能样本选择策略[J].智能系统学报,2021,16(2):346-352.[doi:10.11992/tis.202003002]
CUI Tiejun,LI Shasha.Sample selection strategy of artificial intelligence based on factor space[J].CAAI Transactions on Intelligent Systems,2021,16(2):346-352.[doi:10.11992/tis.202003002]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第2期
页码:
346-352
栏目:
学术论文—人工智能基础
出版日期:
2021-03-05
- Title:
-
Sample selection strategy of artificial intelligence based on factor space
- 作者:
-
崔铁军1, 李莎莎2
-
1. 辽宁工程技术大学 安全科学与工程学院,辽宁 阜新 123000;
2. 辽宁工程技术大学 工商管理学院,辽宁 葫芦岛 125105
- Author(s):
-
CUI Tiejun1, LI Shasha2
-
1. College of Safety Science and Engineering, Liaoning Technical University, Fuxin 123000, China;
2. School of business administration, Liaoning Technical University, Huludao 125105, China
-
- 关键词:
-
智能科学; 因素空间; 莫拉维克悖论; 样本选择; 策略研究; 因素驱动; 策略网络; 人的思维
- Keywords:
-
intelligent science; factor space; Moravec’s paradox; sample selection; strategy research; factor driven; strategic network; human thinking
- 分类号:
-
TP391;X913;C931.1
- DOI:
-
10.11992/tis.202003002
- 摘要:
-
为解决人工智能中莫拉维克悖论提出的问题,基于因素空间思想提出一种人工智能样本选择策略。首先通过因素空间论证了莫拉维克悖论的证确定。其次论述了人的选择过程即是比较过程的论断。认为人选择样本需经过三次选择,分别为选择适合的因素、因素概念相和因素量化相,样本空间中样本在这三次选择中逐渐减少最终唯一。最终为实现策略,划分了研究对象,建立了选择策略层次结构,从而建立了人工智能样本选择策略网络模型。实例分析表明:过程中操作基本是因素及因素相的运算,之后才涉及少量的相测量和数据计算。该策略是人对样本的选择过程,也是人工智能样本选择应具备的策略。
- Abstract:
-
To solve Moravec’s paradox in artificial intelligence, in this paper, we propose a sample selection strategy based on the factor space. First, we confirm the existence of Moravec’s paradox in the factor space. Then, we determine that the process of human selection is one of comparison. It is considered that human beings must choose samples three times, i.e., they must select suitable factors, a factor concept, and a factor quantification. In the sample space, the number of samples is gradually reduced and finally each is unique after three selection rounds. Finally, to apply this strategy, the research object is divided, and a selection strategy hierarchy is established, thereby establishing the artificial-intelligence sample-selection-strategy network model. Case analysis shows that the actions taken in this process are basically factor and factor-phase operations, in which small amounts of phase measurement and data calculation are involved. This strategy is not only the sample selection process used by human beings, but is also that used by artificial intelligence.
备注/Memo
收稿日期:2020-03-01。
基金项目:国家自然科学基金资助项目(52004120);辽宁省教育厅科学研究经费项目(LJ2020QNL018);国家重点研发计划项目(2017YFC1503102);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-31)
作者简介:崔铁军,博士,副教授,硕士生导师,主要研究方向为系统可靠性其智能分析理论。提出和建立了空间故障树理论及空间故障网络理论。获得多个期刊优秀论文奖,多个国际SCI期刊、Springer、Science Publishing Group和国内核心期刊审稿专家。出版学术专著7部,申请发明专利23项。发表学术论文近200篇;李莎莎,讲师,博士,主要研究方向为安全管理及其智能分析。出版学术专著2部,申请发明专利5项。发表学术论文20余篇
通讯作者:崔铁军.E-mail:ctj.159@163.com
更新日期/Last Update:
2021-04-25