[1]刘董经典,孟雪纯,张紫欣,等.一种基于2D时空信息提取的行为识别算法[J].智能系统学报,2020,15(5):900-909.[doi:10.11992/tis.201906054]
LIU Dongjingdian,MENG Xuechun,ZHANG Zixin,et al.A behavioral recognition algorithm based on 2D spatiotemporal information extraction[J].CAAI Transactions on Intelligent Systems,2020,15(5):900-909.[doi:10.11992/tis.201906054]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第5期
页码:
900-909
栏目:
学术论文—机器学习
出版日期:
2020-09-05
- Title:
-
A behavioral recognition algorithm based on 2D spatiotemporal information extraction
- 作者:
-
刘董经典, 孟雪纯, 张紫欣, 杨旭, 牛强
-
中国矿业大学 计算机科学与技术学院,江苏 徐州 221008
- Author(s):
-
LIU Dongjingdian, MENG Xuechun, ZHANG Zixin, YANG Xu, NIU Qiang
-
College of Computer Science & Technology, China University of Mining and Technology , Xuzhou 221008, China
-
- 关键词:
-
行为识别; 视频分析; 神经网络; 深度学习; 卷积神经网络; 分类; 时空特征提取; 密集连接卷积网络
- Keywords:
-
behavior recognition; video analysis; neural networks; deep learning; convolutional neural networks; classification; spatiotemporal feature; densenet
- 分类号:
-
TP391.41
- DOI:
-
10.11992/tis.201906054
- 文献标志码:
-
A
- 摘要:
-
基于计算机视觉的人体行为识别技术是当前的研究热点,其在行为检测、视频监控等领域都有着广泛的应用价值。传统的行为识别方法,计算比较繁琐,时效性不高。深度学习的发展极大提高了行为识别算法准确性,但是此类方法和图像处理领域相比,效果上存在一定的差距。设计了一种基于DenseNet的新颖的行为识别算法,该算法以DenseNet做为网络的架构,通过2D卷积操作进行时空信息的学习,在视频中选取用于表征行为的帧,并将这些帧按时空次序组织到RGB空间上,传入网络中进行训练。在UCF101数据集上进行了大量实验,实验准确率可以达到94.46%。
- Abstract:
-
Human behavior recognition technology based on computer vision is a research hotspot currently. It is widely applied in various fields of social life, such as behavioral detection, video surveillance, etc. Traditional behavior recognition methods are computationally cumbersome and time-sensitive. Therefore, the development of deep learning has greatly improved the accuracy of behavior recognition algorithms. However, compared with the field of image processing, there is a certain gap in the effect of such methods. We introduce a novel behavior recognition algorithm based on DenseNet, which uses DenseNet as the network architecture, learns spatio-temporal information through 2D convolution, selects frames for characterizing behavior in video, organizes these frames into RGB space in time-space order and inputs them into our network to train the network. We have carried out a large number experiments on the UCF101 dataset, and our method can reach an accuracy rate of 94.46%.
备注/Memo
收稿日期:2019-06-28。
基金项目:国家自然科学基金项目(51674255)
作者简介:刘董经典,博士研究生,主要研究方向为行为识别、计算机视觉;张紫欣,硕士研究生,主要研究方向为行为识别、推荐系统、智慧医疗;牛强,教授,主要研究方向为人工智能、数据挖掘和无线传感器网络。发表学术论文40余篇
通讯作者:牛强.E-mail:.niuq@cumt.edu.cn
更新日期/Last Update:
2021-01-15