[1]陈楠楠,巩晓婷,傅仰耿.基于改进规则激活率的扩展置信规则库推理方法[J].智能系统学报,2019,14(6):1179-1188.[doi:10.11992/tis.201906046]
 CHEN Nannan,GONG Xiaoting,FU Yanggeng.Extended belief rule-based reasoning method based on an improved rule activation rate[J].CAAI Transactions on Intelligent Systems,2019,14(6):1179-1188.[doi:10.11992/tis.201906046]
点击复制

基于改进规则激活率的扩展置信规则库推理方法

参考文献/References:
[1] YANG Jianbo, LIU Jun, WANG Jin, et al. Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J]. IEEE transactions on systems, man, and cybernetics-part A:systems and humans, 2006, 36(2):266-285.
[2] HWANG C L, YOON K. Methods for multiple attribute decision making[M]//HWANG C L, YOON K. Multiple Attribute Decision Making. Berlin, Heidelberg:Springer, 1981:58-191.
[3] ZADEH L A, KLIR G J, YUAN Bo. Fuzzy sets, fuzzy logic, and fuzzy systems:selected papers[M]. River Edge, NJ:World Scientific, 1996.
[4] DEMPSTER A P. A generalization of Bayesian inference[J]. Journal of the royal statistical society:series B (methodological), 1968, 30(2):205-247.
[5] ROTA G C. A mathematical theory of evidence:G. Shafer, Princeton University Press, 1976, 297 pp[J]. Shafer, Princeton University Press, 1977, 24(3):341.
[6] 周志杰, 杨剑波, 胡昌华, 等. 置信规则库专家系统与复杂系统建模[M]. 北京:科学出版社, 2011. ZHOU Zhijie, YANG Jianbo, HU Changhua, et al. Belief rule base expert system and complex system modeling[M]. Beijing:Science Press, 2011.
[7] XU Dongling, LIU Jun, YANG Jianbo, et al. Inference and learning methodology of belief-rule-based expert system for pipeline leak detection[J]. Expert systems with applications, 2007, 32(1):103-113.
[8] 杨隆浩, 蔡芷铃, 黄志鑫, 等. 出租车乘车概率预测的置信规则库推理方法[J]. 计算机科学与探索, 2015, 9(8):985-994 YANG Longhao, CAI Zhiling, HUANG Zhixin, et al. Belief rule-base inference methodology for predicting probability of taking taxi[J]. Journal of frontiers of computer science and technology, 2015, 9(8):985-994
[9] WANG Yingming, YANG Jianbo, XU Dongling, et al. Consumer preference prediction by using a hybrid evidential reasoning and belief rule-based methodology[J]. Expert systems with applications, 2009, 36(4):8421-8430.
[10] YANG Jianbo, WANG Yingming, XU Dongling, et al. Belief rule-based methodology for mapping consumer preferences and setting product targets[J]. Expert systems with applications, 2012, 39(5):4749-4759.
[11] YANG Jianbo, LIU Jun, XU Dongling, et al. Optimization models for training belief-rule-based systems[J]. IEEE transactions on systems, man, and cyberneticspart A:systems and humans, 2007, 37(4):569-585.
[12] CHEN Yuwang, YANG Jianbo, XU Dongling, et al. Inference analysis and adaptive training for belief rule based systems[J]. Expert systems with applications, 2011, 38(10):12845-12860.
[13] 常瑞, 张速. 基于优化步长和梯度法的置信规则库参数学习方法[J]. 华北水利水电大学学报, 2011, 32(1):154-157 CHANG Rui, ZHANG Su. An algorithm for training parameters in belief rule-bases based on gradient methods with optimization step size[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2011, 32(1):154-157
[14] 王韩杰, 杨隆浩, 傅仰耿, 等. 专家干预下置信规则库参数训练的差分进化算法[J]. 计算机科学, 2015, 42(5):88-93 WANG Hanjie, YANG Longhao, FU Yanggeng, et al. Differential evolutionary algorithm for parameter training of belief rule base under expert intervention[J]. Computer science, 2015, 42(5):88-93
[15] 苏群, 杨隆浩, 傅仰耿, 等. 基于变速粒子群优化的置信规则库参数训练方法[J]. 计算机应用, 2014, 34(8):2161-2165 SU Qun, YANG Longhao, FU Yanggeng, et al. Parameter training approach based on variable particle swarm optimization for belief rule base[J]. Journal of computer applications, 2014, 34(8):2161-2165
[16] CHANG Leilei, ZHOU Yu, JIANG Jiang, et al. Structure learning for belief rule base expert system:a comparative study[J]. Knowledge-based systems, 2013, 39:159-172.
[17] 杨隆浩, 王晓东, 傅仰耿. 基于关联系数标准差融合的置信规则库规则约简方法[J]. 信息与控制, 2015, 44(1):21-28, 37 YANG Longhao, WANG Xiaodong, FU Yanggeng. Rule reduction approach to belief rule base using correlation coefficient and standard deviation integrated method[J]. Information and control, 2015, 44(1):21-28, 37
[18] 王应明, 杨隆浩, 常雷雷, 等. 置信规则库规则约简的粗糙集方法[J]. 控制与决策, 2014, 29(11):1943-1950 WANG Yingming, YANG Longhao, CHANG Leilei, et al. Rough set method for rule reduction in belief rule base[J]. Control and decision, 2014, 29(11):1943-1950
[19] LIU Jun, MARTINEZ L, CALZADA A, et al. A novel belief rule base representation, generation and its inference methodology[J]. Knowledge-based systems, 2013, 53:129-141.
[20] YANG Longhao, WANG Yingming, FU Yanggeng. A consistency analysis-based rule activation method for extended belief-rule-based systems[J]. Information sciences, 2018, 445-446:50-65.
[21] 林燕清, 傅仰耿. 基于NSGA-Ⅱ的扩展置信规则库激活规则多目标优化方法[J]. 智能系统学报, 2018, 13(3):422-430 LIN Yanqing, FU Yanggeng. NSGA-II-based EBRB rules activation multi-objective optimization[J]. CAAI transactions on intelligent systems, 2018, 13(3):422-430
[22] 苏群, 杨隆浩, 傅仰耿, 等. 基于BK树的扩展置信规则库结构优化框架[J]. 计算机科学与探索, 2016, 10(2):257-267 SU Qun, YANG Longhao, FU Yanggeng, et al. Structure optimization framework of extended belief rule base based on BK-tree[J]. Journal of frontiers of computer science and technology, 2016, 10(2):257-267
[23] YANG Longhao, WANG Yingming, SU Qun, et al. Multi-attribute search framework for optimizing extended belief rule-based systems[J]. Information sciences, 2016, 370/371:159-183.
[24] LIN Yanqing, FU Yanggeng, SU Qun, et al. A rule activation method for extended belief rule base with VP-tree and MVP-tree[J]. Journal of intelligent and fuzzy systems, 2017, 33(6):3695-3705.
[25] CALZADA A, LIU Jun, WANG Hui, et al. A new dynamic rule activation method for extended belief rule-based systems[J]. IEEE transactions on knowledge and data engineering, 2015, 27(4):880-894.
[26] 林燕清, 傅仰耿. 基于改进相似性度量的扩展置信规则库规则激活方法[J]. 中国科学技术大学学报, 2018, 48(1):20-27 LIN Yanqing, FU Yanggeng. A rule activation method for extended belief rule base based on improved similarity measures[J]. Journal of University of Science and Technology of China, 2018, 48(1):20-27
[27] JIAO Lianmeng, PAN Quan, DENOEUX T, et al. Belief rule-based classification system:extension of FRBCS in belief functions framework[J]. Information sciences, 2015, 309:26-49.
[28] COVER T M, HART P E. Nearest neighbor pattern classification[J]. IEEE transactions on information theory, 1967, 13(1):21-27.
相似文献/References:
[1]廖倩芳,李? 柠,李少远.一种数据驱动的Ⅱ型T-S模糊建模方法[J].智能系统学报,2009,4(4):303.
 LIAO Qian-fang,LI Ning,LI Shao-yuan.A TypeⅡ TS fuzzy modeling method for datadriven approaches[J].CAAI Transactions on Intelligent Systems,2009,4():303.
[2]林锦,胡家琛,刘莞玲,等.利用MISA多目标优化的置信规则库分类算法[J].智能系统学报,2019,14(5):982.[doi:10.11992/tis.201809022]
 LIN Jin,HU Jiachen,LIU Wanling,et al.Belief rule base classification algorithm using MISA multi-objective optimization[J].CAAI Transactions on Intelligent Systems,2019,14():982.[doi:10.11992/tis.201809022]
[3]郭宪,方勇纯.仿生机器人运动步态控制:强化学习方法综述[J].智能系统学报,2020,15(1):152.[doi:10.11992/tis.201907052]
 GUO Xian,FANG Yongchun.Locomotion gait control for bionic robots: a review of reinforcement learning methods[J].CAAI Transactions on Intelligent Systems,2020,15():152.[doi:10.11992/tis.201907052]
[4]朱海龙,耿文强,韩劲松,等.利用置信规则库构建WSN节点故障检测模型[J].智能系统学报,2021,16(3):511.[doi:10.11992/tis.202009006]
 ZHU Hailong,GENG Wenqiang,HAN Jinsong,et al.Constructing a WSN node fault detection model using the belief rule base[J].CAAI Transactions on Intelligent Systems,2021,16():511.[doi:10.11992/tis.202009006]
[5]黎建宇,詹志辉.面向大规模特征选择的自监督数据驱动粒子群优化算法[J].智能系统学报,2023,18(1):194.[doi:10.11992/tis.202206008]
 LI Jianyu,ZHAN Zhihui.A self-supervised data-driven particle swarm optimization approach for large-scale feature selection[J].CAAI Transactions on Intelligent Systems,2023,18():194.[doi:10.11992/tis.202206008]

备注/Memo

收稿日期:2019-06-24。
基金项目:国家自然科学基金项目(61773123);福建省自然科学基金项目(2019J01647).
作者简介:陈楠楠,男,1993年生,硕士研究生,主要研究方向为智能决策与专家系统;巩晓婷,女,1982年生,讲师,主要研究方向为不确定多准则决策、信息隐藏技术。参与国家自然科学基金项目3项、福建省自然科学基金项目2项和教育部高等学校博士学科点专项科研基金项目1项。发表学术论文10余篇;傅仰耿,男,1981年生,副教授,博士,CCF会员,CAAI会员,主要研究方向为决策理论与方法、数据挖掘、机器学习、智能系统。主持国家自然科学基金项目1项、福建省自然科学基金项目2项。获国家发明专利授权2项,发表学术论文3 0余篇。
通讯作者:傅仰耿.E-mail:ygfu@qq.com

更新日期/Last Update: 2019-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com