[1]李盼,张霄雁,孟祥福,等.空间关键字个性化语义近似查询方法[J].智能系统学报,2020,15(6):1163-1174.[doi:10.11992/tis.201903033]
 LI Pan,ZHANG Xiaoyan,MENG Xiangfu,et al.Spatial keyword personalized and semantic approximate query approach[J].CAAI Transactions on Intelligent Systems,2020,15(6):1163-1174.[doi:10.11992/tis.201903033]
点击复制

空间关键字个性化语义近似查询方法

参考文献/References:
[1] LU Ying, LU Jiacheng, CONG Gao, et al. Efficient algorithms and cost models for reverse spatial-keyword k-nearest neighbor search[J]. ACM transactions on database systems, 2014, 39(2): 13.
[2] DE FELIPE I, HRISTIDIS V, RISHE N. Keyword search on spatial databases[C]//Proceedings of 2008 IEEE 24th International Conference on Data Engineering. Cancun, Mexico: IEEE, 2008: 656-665.
[3] ZHANG Chengyuan, ZHANG Ying, ZHANG Wenjie, et al. Inverted linear quadtree: efficient top K spatial keyword search[J]. IEEE transactions on knowledge and data engineering, 2016, 28(7): 1706-1721.
[4] BECKMANN N, KRIEGEL H P, SCHNEIDER R, et al. The R*-tree: an efficient and robust access method for points and rectangles[J]. ACM SIGMOD record, 1990, 19(2): 322-331.
[5] ZHANG Dongxiang, OOI B C, TUNG A K H. Locating mapped resources in web 2.0[C]//Proceedings of 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). Long Beach, USA: IEEE, 2010: 521-532.
[6] LI Feifei, YAO Bin, TANG Mingwang, et al. Spatial approximate string search[J]. IEEE transactions on knowledge and data engineering, 2013, 25(6): 1394-1409.
[7] ROCHA-JUNIOR J B, VLACHOU A, DOULKERIDIS C, et al. Efficient processing of top-k spatial preference queries[J]. Proceedings of the VLDB endowment, 2010, 4(2): 93-104.
[8] YAO Bao, LI Feifei, HADJIELEFTHERIOU M, et al. Approximate string search in spatial databases[C]//Proceedings of 2010 IEEE 26th International Conference on Data Engineering. Long Beach, CA, USA: IEEE, 2010: 545-556.
[9] QIAN Zhihu, XU Jiajie, ZHENG Kai, et al. Semantic-aware top-k spatial keyword queries[J]. World wide web, 2018, 21(3): 573-594.
[10] 胡骏, 范举, 李国良, 等. 空间数据上Top-k关键词模糊查询算法[J]. 计算机学报, 2012, 35(11): 2237-2246
HU Jun, FAN Ju, LI Guoliang, et al. Top-k fuzzy spatial keyword search[J]. Chinese journal of computers, 2012, 35(11): 2237-2246
[11] 刘喜平, 万常选, 刘德喜, 等. 空间关键词搜索研究综述[J]. 软件学报, 2016, 27(2): 329-347
LIU Xiping, WAN Changxuan, LIU Dexi, et al. Survey on spatial keyword search[J]. Journal of software, 2016, 27(2): 329-347
[12] ZHANG Dongxaing, CHEE Y M, MONDAL A, et al. Keyword search in spatial databases: Towards searching by document[C]//Proceedings of 2009 IEEE 25th International Conference on Data Engineering. Shanghai, China: IEEE, 2009: 688-699.
[13] CONG Gao, JENSEN C S, WU Dingming. Efficient retrieval of the top-k most relevant spatial web objects[J]. Proceedings of the VLDB endowment, 2009, 2(1): 337-348.
[14] KWON H Y, WANG Haixun, WHANG K Y. G-index model: a generic model of index schemes for top-k spatial-keyword queries[J]. World wide web, 2015, 18(4): 969-995.
[15] LEVY O, GOLDBERG Y. Linguistic regularities in sparse and explicit word representations[C]//Proceedings of the Eighteenth Conference on Computational Natural Language Learning. Michigan, USA, 2014: 171-180.
[16] MORSE M, PATEL J M, JAGADISH H V. Efficient skyline computation over low-cardinality domains[C]//Proceedings of the 33rd International Conference on Very large Data Bases. Vienna, Austria: VLDB Endowment, 2007: 267-278.
[17] LIU Xiping, CHEN Lei, WAN Changxuan. LINQ: a framework for location-aware indexing and query processing[J]. IEEE transactions on knowledge and data engineering, 2015, 27(5): 1288-1300.
[18] BORZSONY S, KOSSMANN D, STOCKER K. The skyline operator[C]//Proceedings 17th International Conference on Data Engineering. Heidelberg, Germany: IEEE, 2001: 421-430.
[19] LEBRET R, COLLOBERT R. Word embeddings through Hellinger PCA[C]//Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics. Gothenburg, Sweden, 2014: 482-490.
[20] LEVY O, GOLDBERG Y. Neural word embedding as implicit matrix factorization[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: ACM, 2014: 2177-2185.
[21] LI Yitan, XU Linli, TIAN Fei, et al. Word embedding revisited: a new representation learning and explicit matrix factorization perspective[C]//Proceedings of the Twenty-Fourth International Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015: 3650-3656.
[22] GLOBERSON A, CHECHIK G, PEREIRA F, et al. Euclidean embedding of co-occurrence data[J]. The journal of machine learning research, 2007, 8: 2265-2295.
[23] QURESHI M A, GREENE D. EVE: explainable vector based embedding technique using Wikipedia[J]. Journal of intelligent information systems, 2019, 53(1): 137-165.
[24] SOCHER R, BAUER J, MANNING C D, et al. Parsing with compositional vector grammars[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia, Bulgaria, 2013: 455-465.
[25] SOCHER R, PERELYGIN A, WU J, et al. Recursive deep models for semantic compositionality over a sentiment Treebank[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Washington, USA, 2013: 1631-1642.
[26] MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA, 2013: 3111-3119.
[27] GODFREY P, SHIPLEY R, GRYZ J. Maximal vector computation in large data sets[C]//Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, Norway, 2005: 229-240.
[28] ASUDEH A, THIRUMURUGANATHAN S, ZHANG Nan. Discovering the skyline of web databases[J]. Proceedings of the VLDB endowment, 2016, 9(7): 600-611.
[29] ILYAS I F, BESKALES G, SOLIMAN M A. A survey of top-k query processing techniques in relational database systems[J]. ACM computing surveys, 2008, 40(4): 11.
[30] KOSSMANN D, RAMSAK F, ROST S. Shooting stars in the sky: an online algorithm for skyline queries[C]//Proceedings of the 28th International Conference on Very Large Data Bases. Hong Kong, China, 2002: 275-286.

备注/Memo

收稿日期:2019-03-25。
基金项目:国家自然科学基金面上项目(61772249)
作者简介:李盼,硕士研究生,主要研究方向为空间关键词查询和空间推荐系统;张霄雁,博士研究生,主要研究方向为空间数据分析、城市计算和深度学习。提出了空间对象的聚类分析方法、空间?文本数据的语义近似查询和多样性推荐方法,主持辽宁省教育厅科学研究项目1项。发表学术论文10余篇;孟祥福,教授,博士生导师,主要研究方向为空间数据管理、推荐系统和大数据可视化等。提出了空间对象的耦合关系分析模型,多样性兴趣点推荐方法和Web数据库top-k个性化检索方法,主持国家自然科学基金2项、辽宁省自然科学基金项目等3项, 发表学术论文30余篇。
通讯作者:孟祥福.E-mail:marxi@126.com

更新日期/Last Update: 2020-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com