[1]李盼,张霄雁,孟祥福,等.空间关键字个性化语义近似查询方法[J].智能系统学报,2020,15(6):1163-1174.[doi:10.11992/tis.201903033]
LI Pan,ZHANG Xiaoyan,MENG Xiangfu,et al.Spatial keyword personalized and semantic approximate query approach[J].CAAI Transactions on Intelligent Systems,2020,15(6):1163-1174.[doi:10.11992/tis.201903033]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第6期
页码:
1163-1174
栏目:
学术论文—自然语言处理与理解
出版日期:
2020-11-05
- Title:
-
Spatial keyword personalized and semantic approximate query approach
- 作者:
-
李盼, 张霄雁, 孟祥福, 赵路路, 齐雪月
-
辽宁工程技术大学 电子与信息工程学院, 辽宁 葫芦岛 125105
- Author(s):
-
LI Pan, ZHANG Xiaoyan, MENG Xiangfu, ZHAO Lulu, QI Xueyue
-
School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China
-
- 关键词:
-
空间关键字查询; 词嵌入; 语义近似查询; 文本; 数值属性; 索引结构; 查询匹配
- Keywords:
-
spatial keyword query; word embedding; semantic approximate query; text; numerical attribute; index structure; query matching
- 分类号:
-
TP311
- DOI:
-
10.11992/tis.201903033
- 摘要:
-
现有的空间关键字查询处理模式大都仅支持位置相近和文本相似匹配,但不能将语义相近但形式上不匹配的对象提供给用户;并且,当前的空间-文本索引结构也不能对空间对象中的数值属性进行处理。针对上述问题,本文提出了一种支持语义近似查询的空间关键字查询方法。首先,利用词嵌入技术对用户原始查询进行扩展,生成一系列与原始查询关键字语义相关的查询关键字;然后,提出了一种能够同时支持文本和语义匹配,并利用Skyline方法对数值属性进行处理的混合索引结构AIR-Tree;最后,利用AIR-Tree进行查询匹配,返回top-k个与查询条件最为相关的有序空间对象。实验分析和结果表明,与现有同类方法相比,本文方法具有较高的执行效率和较好的用户满意度;基于AIR-Tree索引的查询效率较IRS-Tree索引提高了3.6%,在查询结果准确率上较IR-Tree和IRS-Tree索引分别提高了10.14%和16.15%。
- Abstract:
-
Most spatial keyword query processing models only support the location proximity and text similarity matching. However, in terms of text information processing, spatial objects with similar semantics but mismatched forms cannot be filtered out and provided to query users. Furthermore, the current spatial-text index structure cannot process the numerical attributes. To solve the above problem, this paper proposes a spatial keyword query method that can support the semantic approximate query processing. Word embedding technology is used to expand the users’ original queries and generate a series of query keywords semantically related to the original query keywords. Then, a hybrid index structure AIR-tree that can support text and semantic matching and use the Skyline method to process numerical attributes is proposed. Finally, AIR-tree is used for query matching to return the top-k ordered spatial objects most closely related to the query conditions. Experimental analysis and results show that compared with similar methods, this method has a higher execution efficiency and better user satisfaction. The query efficiency based on the AIR-tree index is 3.6% higher than that of the IRS-tree index. In terms of accuracy, IR-tree and IRS-tree are increased by 10.14% and 16.15%, respectively, compared with AIR-tree.
备注/Memo
收稿日期:2019-03-25。
基金项目:国家自然科学基金面上项目(61772249)
作者简介:李盼,硕士研究生,主要研究方向为空间关键词查询和空间推荐系统;张霄雁,博士研究生,主要研究方向为空间数据分析、城市计算和深度学习。提出了空间对象的聚类分析方法、空间?文本数据的语义近似查询和多样性推荐方法,主持辽宁省教育厅科学研究项目1项。发表学术论文10余篇;孟祥福,教授,博士生导师,主要研究方向为空间数据管理、推荐系统和大数据可视化等。提出了空间对象的耦合关系分析模型,多样性兴趣点推荐方法和Web数据库top-k个性化检索方法,主持国家自然科学基金2项、辽宁省自然科学基金项目等3项, 发表学术论文30余篇。
通讯作者:孟祥福.E-mail:marxi@126.com
更新日期/Last Update:
2020-12-25