[1]王昌安,田金文.生成对抗网络辅助学习的舰船目标精细识别[J].智能系统学报,2020,15(2):296-301.[doi:10.11992/tis.201901004]
 WANG Changan,TIAN Jinwen.Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15(2):296-301.[doi:10.11992/tis.201901004]
点击复制

生成对抗网络辅助学习的舰船目标精细识别

参考文献/References:
[1] LIN Jiale, YANG Xubo, XIAO Shuangjiu, et al. A line segment based inshore ship detection method[M]//DENG Wei. Future Control and Automation. Berlin, Heidelberg: Springer, 2012: 261-269.
[2] 雷琳, 粟毅. 一种基于轮廓匹配的近岸舰船检测方法[J]. 遥感技术与应用, 2007, 22(5): 622-627
LEI Lin, SU Yi. An inshore ship detection method based on contour matching[J]. Remote sensing technology and application, 2007, 22(5): 622-627
[3] 李毅, 徐守时. 基于支持向量机的遥感图像舰船目标识别方法[J]. 计算机仿真, 2006, 23(6): 180-183
LI Yi, XU Shoushi. A new method for ship target recognition based on support vector machine[J]. Computer simulation, 2006, 23(6): 180-183
[4] LIN Haoning, SHI Zhenwei, ZOU Zhengxia, et al. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images[J]. IEEE geoscience and remote sensing letters, 2017, 14(10): 1665-1669.
[5] YANG Xue, SUN Hao, FU Kun, et al. Automatic ship detection of remote sensing images from google earth in complex scenes based on multi-scale rotation dense feature pyramid networks[J]. arXiv preprint arXiv: 1806.04331, 2018.
[6] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montréal, Canada, 2014: 2672-2680.
[7] XU Suhui, MU Xiaodong, CHAI Dong, et al. Remote sensing image scene classification based on generative adversarial networks[J]. Remote sensing letters, 2018, 9(7): 617-626.
[8] WANG Xiaolong, SHRIVASTAVA A, GUPTA A. A-fast-RCNN: hard positive generation via adversary for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, 2017: 1063-6919.
[9] MA Jianqi, SHAO Weiyuan, YE Hao, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE transactions on multimedia, 2018, 20(11): 3111-3122.
[10] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1440-1448.
[11] CHENG Bowen, WEI Yunchao, SHI Honghui, et al. Revisiting RCNN: on awakening the classification power of faster RCNN[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018: 473-490.
[12] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv: 1511.06434, 2015.
[13] EVERINGHAM M, VAN GOOL L, WILLIAMS C, et al. The PASCAL visual object classes challenge 2007(VOC2007) results[EB/OL]. University of Oxford, 2007. http://host.robots.ox.ac.uk/pascal/VOC/.
[14] LIAO Minghui, SHI Baoguang, BAI Xiang. TextBoxes++: a single-shot oriented scene text detector[J]. IEEE transactions on image processing, 2018, 27(8): 3676-3690.
[15] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montréal, Canada, 2015: 91-99.
[16] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 2579-2605.
相似文献/References:
[1]刘富,于鹏,刘坤.采用独立分量分析Zernike矩的遥感图像飞机目标识别[J].智能系统学报,2011,6(1):51.
 LIU Fu,YU Peng,LIU Kun.Research concerning aircraft recognition of remote sensing images based on ICA Zernike invariant moments[J].CAAI Transactions on Intelligent Systems,2011,6():51.
[2]龙海侠,吴淑雷,吕雁.基于多样性变异的QPSO算法的遥感图像分类[J].智能系统学报,2015,10(6):938.[doi:10.11992/tis.201507045]
 LONG Haixia,WU Shulei,LYU Yan.Classification of multispectral remote sensing image based on QPSO and diversity-mutation[J].CAAI Transactions on Intelligent Systems,2015,10():938.[doi:10.11992/tis.201507045]
[3]吴诗婳,吴一全,周建江.直线截距直方图城区遥感图像多阈值分割[J].智能系统学报,2018,13(2):227.[doi:10.11992/tis.201609012]
 WU Shihua,WU Yiquan,ZHOU Jianjiang.Multi-level thresholding for remote sensing image of urban area based on line intercept histogram[J].CAAI Transactions on Intelligent Systems,2018,13():227.[doi:10.11992/tis.201609012]
[4]李亚飞,董红斌.基于卷积神经网络的遥感图像分类研究[J].智能系统学报,2018,13(4):550.[doi:10.11992/tis.201706078]
 LI Yafei,DONG Hongbin.Classification of remote-sensing image based on convolutional neural network[J].CAAI Transactions on Intelligent Systems,2018,13():550.[doi:10.11992/tis.201706078]
[5]王晓林,苏松志,刘晓颖,等.一种基于级联神经网络的飞机检测方法[J].智能系统学报,2020,15(4):697.[doi:10.11992/tis.201908028]
 WANG Xiaolin,SU Songzhi,LIU Xiaoying,et al.Cascade convolutional neural networks for airplane detection[J].CAAI Transactions on Intelligent Systems,2020,15():697.[doi:10.11992/tis.201908028]
[6]赵文清,康怿瑾,赵振兵,等.改进YOLOv5s的遥感图像目标检测[J].智能系统学报,2023,18(1):86.[doi:10.11992/tis.202203013]
 ZHAO Wenqing,KANG Yijin,ZHAO Zhenbing,et al.A remote sensing image object detection algorithm with improved YOLOv5s[J].CAAI Transactions on Intelligent Systems,2023,18():86.[doi:10.11992/tis.202203013]
[7]刘庆鑫,李霓,贾鹤鸣,等.改进䲟鱼优化算法和熵测度的图像多阈值分割[J].智能系统学报,2024,19(2):381.[doi:10.11992/tis.202205018]
 LIU Qingxin,LI Ni,JIA Heming,et al.An improved remora optimization algorithm for multilevel thresholding image segmentation using an entropy measure[J].CAAI Transactions on Intelligent Systems,2024,19():381.[doi:10.11992/tis.202205018]
[8]邵凯,王明政,王光宇.基于Transformer的多尺度遥感语义分割网络[J].智能系统学报,2024,19(4):920.[doi:10.11992/tis.202304026]
 SHAO Kai,WANG Mingzheng,WANG Guangyu.Transformer-based multiscale remote sensing semantic segmentation network[J].CAAI Transactions on Intelligent Systems,2024,19():920.[doi:10.11992/tis.202304026]
[9]梁礼明,冯耀,龙鹏威,等.基于MobileViT和多尺度特征聚合的遥感图像目标检测[J].智能系统学报,2024,19(5):1168.[doi:10.11992/tis.202310022]
 LIANG Liming,FENG Yao,LONG Pengwei,et al.Remote sensing image object detection based on MobileViT and multiscale feature aggregation[J].CAAI Transactions on Intelligent Systems,2024,19():1168.[doi:10.11992/tis.202310022]
[10]曲海成,李瑞柯,王蒙,等.基于特征重用和膨胀卷积的遥感图像舰船检测[J].智能系统学报,2024,19(5):1298.[doi:10.11992/tis.202304002]
 QU Haicheng,LI Ruike,WANG Meng,et al.Ship detection in remote sensing images via feature reuse and dilated convolution[J].CAAI Transactions on Intelligent Systems,2024,19():1298.[doi:10.11992/tis.202304002]

备注/Memo

收稿日期:2019-01-06。
基金项目:国家自然科学基金项目(61273279)
作者简介:王昌安,硕士研究生,主要研究方向为遥感图像处理、计算机视觉;田金文,教授,博士生导师,中国电子学会高级会员。主要研究方向为计算机视觉及其应用、机器学习及其应用、自动目标识别及应用、遥感图像信息处理、目标光学特性建模与成像仿真。主持国家自然科学基金项目1项,国家863项目多项,发表学术论文20余篇
通讯作者:田金文.E-mail:jwtian@mail.hust.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com